PHYS101-Term 112 - First Major - Zero Version

Q1. Express the speed of sound, $330 \mathrm{~m} / \mathrm{s}$ in miles $/ \mathrm{h}$. (Take $1 \mathrm{mile}=1609 \mathrm{~m}$)
A) $738 \mathrm{miles} / \mathrm{h}$
B) $330 \mathrm{miles} / \mathrm{h}$
C) $147 \mathrm{miles} / \mathrm{h}$
D) $0.205 \mathrm{miles} / \mathrm{h}$
E) $980 \mathrm{miles} / \mathrm{h}$

Q2. What is the dimension of the constant G in the equation: $F=G \frac{m_{1} m_{2}}{r^{2}}$, where F is force, m_{1} and m_{2} are masses and r is the distance between the two masses.
A) $\mathrm{L}^{3} \mathrm{M}^{-1} \mathrm{~T}^{-2}$
B) $\mathrm{L} \mathrm{M}^{-2}$
C) $\mathrm{L}^{2} \mathrm{M}^{-3}$
D) MTL^{-2}
E) $\mathrm{ML}^{2} \mathrm{~T}^{-1}$

Q3. A vector \vec{A} is added to the sum of two vectors $\vec{B}=3.0 \hat{i}-2.0 \hat{j}-2.0 \hat{k}$ and $\vec{C}=2.0 \hat{i}-\hat{j}+3.0 \hat{k}$ such that $\vec{A}+\vec{B}+\vec{C}=\hat{k}$. The vector \vec{A} is:
A) $-5.0 \hat{i}+3.0 \hat{j}$
B) $5.0 \hat{i}-3.0 \hat{j}$
C) $-3.0 \hat{i}-1.0 \hat{j}$
D) $-1.0 \hat{i}+3.0 \hat{j}$
E) $3.0 \hat{\mathrm{j}}$

Q4. Consider the vector $\vec{A}=3.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}$. Which of the following vectors is perpendicular to vector \vec{A} :
A) $4.0 \hat{i}-3.0 \hat{\mathrm{j}}$
B) $3.0 \hat{i}-4.0 \hat{j}$
C) $4.0 \hat{i}+3.0 \hat{j}$
D) $-3.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}$
E) $3.0 \hat{i}+4.0 \hat{j}$

Q5. Find the sum of the following two vectors: $\vec{A}: 8.66$ in $+x$-direction, $\vec{B}: 10.0$, at 60° from $+y$-axis measured counterclockwise.
A) $5.00 \hat{\mathrm{j}}$
B) $3.00 \hat{i}+4.00 \hat{j}$
C) $6.00 \hat{i}+8.00 \hat{j}$
D) $8.66 \hat{i}+10.0 \hat{j}$
E) $\hat{\mathrm{i}}+16.7 \hat{\mathrm{j}}$

Q6. Starting at time $t=0$, an object moves along a straight line. Its coordinate in meters is given by $x(t)=75 t-1.0 t^{3}$, where t is in seconds. When it momentarily stops, its position is:
A) $x=250 \mathrm{~m}$
B) $x=150 \mathrm{~m}$
C) $x=300 \mathrm{~m}$
D) $x=75 \mathrm{~m}$
E) $x=350 \mathrm{~m}$

Q7. An object starts from rest at the origin and moves along the x axis with a constant acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{2}$. Its average velocity as it goes from $x=2.0 \mathrm{~m}$ to $x=18.0 \mathrm{~m}$ is:
A) $8.0 \mathrm{~m} / \mathrm{s}$
B) $6.0 \mathrm{~m} / \mathrm{s}$
C) $3.0 \mathrm{~m} / \mathrm{s}$
D) $5.0 \mathrm{~m} / \mathrm{s}$
E) $1.0 \mathrm{~m} / \mathrm{s}$

Q8. A ball is thrown vertically upward. After 4.00 s the ball returned back to its initial position. The maximum height above the initial position of the ball is:
A) 19.6 m
B) 4.90 m
C) 9.8 m
D) 11.0 m
E) 15.0 m

Q9. Figure 1 represents the straight line motion of a car. Which of the following statements is
true?

A) The car accelerates at $6 \mathrm{~m} / \mathrm{s}^{2}$ for the first 2 s
B) The car accelerates, stops, and reverses
C) The car is moving for a total time of 12 s
D) The car decelerates at $12 \mathrm{~m} / \mathrm{s}^{2}$ for the last 4 s
E) The car returns to its starting point when $t=9 \mathrm{~s}$

Q10. At $\mathrm{t}=0$, a car moves with initial velocity $\vec{v}_{i}=(3.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$. At $\mathrm{t}=2.0 \mathrm{~s}$, the velocity becomes $\vec{v}_{f}=(8.0 \hat{\mathrm{i}}-7.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$. What is the direction of the average acceleration of the car for the time interval from $t=0$ to $t=2.0 \mathrm{~s}$?
A) -67° from the x-axis
B) 67° from the x-axis
C) 33° from the x-axis
D) -33° from the x-axis
E) $\quad 52^{\circ}$ from the x-axis

Q11. A particle moves in the $x y$-plane with a constant acceleration given by $\vec{a}=(-4.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}$. At $t=0$ its position vector and velocity are $\overrightarrow{\mathrm{r}}_{\mathrm{o}}=(10 \hat{\mathrm{i}}) \mathrm{m}$ and $\overrightarrow{\mathrm{v}}_{\mathrm{o}}=(-2.0 \hat{\mathrm{i}}+8.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$, respectively. What is the distance of the particle from the origin at $t=2.0 \mathrm{~s}$?
A) 10 m
B) 6.4 m
C) 8.9 m
D) 2.0 m
E) 6.2 m

Q12. A particle moves in the $x y$-plane in a circle centered on the origin. At a certain instant the velocity and acceleration of the particle are $(4.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$ and $(-3.0 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}^{2}$, respectively. What is the radius of the circle?
A) $x=5.3 \mathrm{~m}$
B) $x=4.4 \mathrm{~m}$
C) $x=1.3 \mathrm{~m}$
D) $x=3.1 \mathrm{~m}$
E) $x=2.2 \mathrm{~m}$

Q13: A projectile is fired with an initial speed v_{0} directed at an angle θ_{0} above the horizontal. If the speed at maximum height is $\frac{v_{o}}{2}$, find the angle θ_{0}.
A) 60°
B) 76°
C) 30°
D) 45°
E) 55°

Q14: Relative to the air, a plane flies eastward at a speed of $156 \mathrm{~m} / \mathrm{s}$. A wind is blowing southward at a speed of $20.0 \mathrm{~m} / \mathrm{s}$, relative to the ground. The velocity of the plane relative to the ground is:
A) $157 \mathrm{~m} / \mathrm{s}$ at an angle 7.31° south of east.
B) $170 \mathrm{~m} / \mathrm{s}$ at an angle 82.7° south of east
C) $136 \mathrm{~m} / \mathrm{s}$ at an angle 7.31° south of east
D) $136 \mathrm{~m} / \mathrm{s}$ at an angle 7.31° east of south
E) $157 \mathrm{~m} / \mathrm{s}$ at an angle 7.31° north of east

Q15. A ball of mass 0.50 kg attains acceleration, $\vec{a}=(4.0 \hat{\mathrm{i}}+6.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}$ as a result of two forces \vec{F}_{1} and \vec{F}_{2}. If $\vec{F}_{1}=(\mathrm{A} \hat{\mathrm{i}}-\mathrm{B} \hat{\mathrm{j}}) \mathrm{N}$, and $\vec{F}_{2}=(\mathrm{B} \hat{\mathrm{i}}) \mathrm{N}$, where A and B are constants, find the value of A .
A) 5.0 N
B) 2.0 N
C) 4.0 N
D) 6.0 N
E) 0.50 N

Q16. A 70.0 kg person stands on a scale in an elevator. If the scale reading was 826 N , what is the acceleration of the elevator?
A) $2.00 \mathrm{~m} / \mathrm{s}^{2}$ upward
B) $2.00 \mathrm{~m} / \mathrm{s}^{2}$ downward
C) Zero
D) $5.00 \mathrm{~m} / \mathrm{s}^{2}$ upward
E) $5.00 \mathrm{~m} / \mathrm{s}^{2}$ downward

Q17. A 20 kg ball is travelling in a frictionless track along positive x-direction and its velocity/time graph is shown in Figure 2. The force experienced by the ball at $5^{\text {th }}$ second is:
(Force is taken positive if it acts along positive x-axis)

A) 20 N
B) -40 N
C) Zero
D) 5 N
E) -10 N

Q18. A block of mass 5.0 kg is pushed up in a $\theta=30^{\circ}$ incline plane with a force, F , parallel to a rough plane of coefficient of kinetic friction $\mu_{\mathrm{k}}=0.20$, as shown in Figure 3. What value of F is required to move the block up the plane at constant speed of $v=2.0 \mathrm{~m} / \mathrm{s}$?

A) 33 N
B) 47 N
C) 98 N
D) 42 N
E) 8.5 N

Q19. A car, travelling on a circular horizontal road of radius 200 m , is almost about to slip. If the static coefficient of the road is 0.150 , the speed of the car is:
A) $17.1 \mathrm{~m} / \mathrm{s}$
B) $294 \mathrm{~m} / \mathrm{s}$
C) $27.3 \mathrm{~m} / \mathrm{s}$
D) $9.45 \mathrm{~m} / \mathrm{s}$
E) $29.4 \mathrm{~m} / \mathrm{s}$

Q20. Figure 4 shows two masses, of 5.0 kg and 2.0 kg , are tied together with a string that goes over a massless / frictionless pulley. The 5.0 kg body moves over a rough surface with coefficient of kinetic friction μ_{k}. If the system moves with constant speed $2.0 \mathrm{~m} / \mathrm{s}$, find the value of μ_{k}.

A) 0.40
B) 0.25
C) 0.71
D) 0.31
E) 0.13

