Phys101	First Major-092	Zero Version
	Saturday, March 27, 2010	Page: 1

Q1.

The force F applied on a particle is given by the relation $F = K \rho A B^2$, where K is a dimensionless constant, ρ is a density and A is an area. Find the dimension of B.

A) L/T

- B) L^2/T^2
- C) T/L D) T^2/L^2
- E) M/T
- Q2.

Gold has a density of 19.3 g/cm³. If a sample of gold of mass 30.5 g is pressed so as to make a sheet of 1.00 micrometer thickness, what is the area of the sheet? (1 micrometer = 10^{-6} m)

A) 1.58 m²
B) 3.05 m²
C) 2.45 m²
D) 5.32 m²

E) 10.5 m^2

Q3.

An airplane must reach a speed of 400 km/h on a runway for takeoff. What is the lowest constant acceleration (in m/s^2) for takeoff from a 2.00 km runway assuming the plane starts from rest?

A) 3.09

B) 1.25C) 3.27

D) 4.50

E) 10.4

Q4.

A stone is thrown vertically up from the edge of the top of a 100-m high building. It reaches the ground (at the bottom of the building) after 10.0 s. What is the initial speed of the stone?

A) 39.0 m/s
B) 29.0 m/s
C) 49.0 m/s
D) 59.0 m/s
E) 69.0 m/s

Q5.

A car travels up a hill at a constant speed of 30 km/h and down the same hill at a constant speed of 50 km/h. Calculate the average speed of the car for the round trip (up and down the hill, the same distance).

- A) 38 km/h
- B) 40 km/h
- C) zero
- D) 20 km/h

E) 80 km/h

Q6.

Figure 1 shows the acceleration-time graph of a particle moving along an axis. In which of the time intervals indicated in the figure, does the particle move at constant speed?

A) a and e
B) c and g
C) d and f
D) a, c, e, and g
E) b

Q7.

The vectors \vec{X} , \vec{Y} , and \vec{Z} are related by $\vec{Z} = \vec{Y} - \vec{X}$. Which diagram shown in figure 3 illustrates this relationship?

- A) EB) B
- \overrightarrow{C} C
- D) D
- E) A
- Q8.

Let $\vec{S} = \hat{i} - 2\hat{j} + 2\hat{k}$ and $\vec{T} = 3\hat{i} + 4\hat{k}$. The angle between these two vectors is:

- A) 42.8⁰
 B) 29.9⁰
 C) 77.2⁰
 D) 21.0⁰
 E) 90.0⁰
- Q9.

In Figure 2, vector \vec{A} has magnitude 12.0 m and vector \vec{B} has magnitude 8.00 m. Vector $\vec{A} - \vec{B}$ is:

A) $(12.9 \hat{i} + 6.40 \hat{j}) m$ B) $(12.9 \hat{i} + 14.4 \hat{j}) m$ C) $(0.900 \hat{i} - 14.4 \hat{j}) m$ D) $(14.4 \hat{i} + 12.9 \hat{j}) m$ E) $(14.4 \hat{i} + 0.900 \hat{j}) m$

Q10.

The airplane shown in Figure 4 flies horizontally at an altitude of 1.00 km with a speed of 150 km/h. At what distance D should it release a package to hit the target X?

A) 596 m

B) 345 m

C) 783 mD) 234 m

E) 930 m

Q11.

A particle is moving in the xy-plane with a constant acceleration $\vec{a} = -1.0 \hat{i} - 0.50 \hat{j} \text{ (m/s^2)}$.

It leaves the origin with an initial velocity 3.0 \hat{i} (m/s). What is the velocity in m/s of the particle when it reaches its maximum x coordinate?

A) $-1.5\hat{i}$

B) zero

C) $+1.5\hat{j}$

D) -1.5 î

E) +1.5 î

Q12.

A car is moving north at 20 km/h. It makes a gradual 180° turn (U-turn) at the same speed, changing its direction of travel from north to south in 20 s. The average acceleration of the car for this turn is:

A) 2.0 km/h·s, toward the south

B) $1.0 \text{ km/h} \cdot \text{s}$, toward the south

C) 1.0 km/h·s, toward the north

D) $2.0 \text{ km/h} \cdot \text{s}$, toward the north

E) zero

Q13.

A boat is traveling at 14 km/h in still water (water is not flowing). A man runs directly across the boat, from one side to the other (perpendicular to the direction of motion of the boat), at 6 km/h relative to the boat. The speed of the man relative to the ground is:

A) 15 km/h

- B) 13 km/h
- C) 14 km/h
- D) 8.0 km/h
- E) 20 km/h

Q14.

In figure 5, a particle P is in uniform circular motion, centered at the origin of an xy coordinate system. At what point shown in the figure is the magnitude of the particle's vertical acceleration a_y maximum?

A) A

- B) B
- C) C
- D) D
- E) E

Phys101	s101 First Major-092	
	Saturday, March 27, 2010	Page: 4

Q15.

In the system shown in Figure 6, a horizontal force \vec{F} acts on the 8.0-kg object. The horizontal surface is frictionless. What is the magnitude of \vec{F} if the 5.0-kg object has a downward acceleration of 1.0 m/s²?

A) 54 N

- B) 9.6 N
- C) 3.6 ND) 84 N
- D) 84 N
- E) zero

Q16.

The coefficient of kinetic friction:

- A) is a dimensionless quantity
- B) is greater than the coefficient of static friction
- C) is the ratio of force to area
- D) can have units of Newtons
- E) is in the direction of the frictional force

Q17.

Figure 7 shows four possible choices for the direction of **ONE force** of magnitude F to be applied to a block on an inclined plane of angle 30°. The directions are either horizontal or vertical. (for all choices, we assume that the block remains on the inclined plane). Rank the choices according to the magnitude of **the normal force** on the block from the plane, **greatest first**.

- A) choice 4, choice 3, choice 1, choice 2
- B) choice 3, choice 4, choice 1, choice 2
- C) choice 1, choice 3, choice 4, choice 2
- D) choice 2, choice 3, choice 1, choice 4
- E) (choice 3 and choice 4) tie, (choice 1 and choice 2) tie

Q18.

A block of mass 2.0 kg is being pushed by a force \vec{F} parallel to the ground as shown in Figure 8. The block is observed to have an acceleration of 1.0 m/s² down the incline. Assume the incline is frictionless. Calculate the magnitude of the force \vec{F} .

- A) 9.0 N
- B) 11 N
- C) 6.5 N
- D) 1.9 N
- E) 14 N

Q19.

A block of mass 3.0 kg is pushed against a rough wall (coefficient of kinetic friction is 0.20) by a force P = 30 N that makes an angle of 50° with the horizontal as shown in Figure 9. Assuming the block is sliding down, find the magnitude of its acceleration.

A) 0.85 m/s²
B) 9.8 m/s²
C) 1.8 m/s²
D) 0.17 m/s²
E) 2.1 m/s²

Q20.

A pilot of mass 75.0 kg in a jet aircraft executes a loop-the-loop, as shown in Figure 10. In this maneuver, the aircraft moves in a vertical circle of radius R = 3.00 km at a constant speed of 250 m/s. Determine the magnitude of the force exerted by the seat on the pilot at the bottom of the loop.

A) 2.30×10^{3} N B) 828 N C) 735 N D) 5.20×10^{3} N E) 1.50×10^{3} N

Formula Sheet for PHYS101-092-First Major

 $y = x^{n};$ $\frac{dy}{dx} = nx^{n-1}$ <u>Motion in One Dimension</u>

$$v = \frac{dx}{dt};$$
 $a = \frac{dv}{dt};$ $v_{avg} = \frac{\Delta x}{\Delta t};$ $a_{avg} = \frac{\Delta v}{\Delta t}$

Motion with Constant Acceleration

$v = v_o + a t$		$x - x_o = v_o t + \frac{1}{2}a t^2$	
$v^{2} = v_{o}^{2} + 2a(x - x_{o})$	$x - x_o = \frac{1}{2}$	$\frac{1}{2}(v + v_o)t$	$x - x_o = vt - \frac{1}{2}a t^2$

Free Fall

<u>1100 1 un</u>				
<i>a</i> = -	-g;	g = 9.80 m/s	2	
Vector Multiplications				
$\vec{a}\cdot\vec{b}=ab$	$\cos\phi$	$\left \vec{a}\times\vec{b}\right = a$	b sin ø	
Motion in Two Dimensions				
	$\vec{r} = \frac{d\vec{r}}{dt};$			
$\vec{r} = x\hat{i} + y\hat{j}$	$\vec{r} - \vec{r_o} = \vec{v_o}$	$t + \frac{1}{2}\vec{a}t^2;$	$\vec{v} = \vec{v_o} + \vec{at}$	
Projectile Motion				

$a_x = 0$	$a_{y} = -9.80m / s^{2}$
$v_x = v_o \cos \theta_o$	$v_y = v_o \sin \theta_o - g t$
$x - x_o = v_o \cos \theta_o t$	$y - y_o = v_o \sin \theta_o t - \frac{1}{2} g t^2$

Uniform Circular Motion

$$a_r = \frac{v^2}{r}$$
$$T = \frac{2\pi r}{v}$$

Relative Motion

 $\frac{\text{Relative Motion}}{\vec{v}_{PA} = \vec{v}_{PB} + \vec{v}_{BA}}$ $\vec{v}_{AB} = \text{velocity of A relative to B} = -\vec{v}_{BA}$ $\frac{\text{Newton's Second Law}}{\sum \vec{F} = m\vec{a}} \iff \sum F_x = \max_x; \quad \sum F_y = \max_y$

$$\frac{\mathbf{Friction}}{f_{s,\max}} = \frac{\mu_s N}{\mu_s N}; \quad f_k = \mu_k N$$