Q1.
Iron has a density of $7.87 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of an iron block having a volume of 2 in^{3} ? $(1 \mathrm{in}=2.54 \mathrm{~cm})$
A) 0.26 kg
B) 0.33 kg
C) 0.55 kg
D) 0.76 kg
E) 0.13 kg

Q2.

The speed of sound v in a fluid depends upon the fluid density ρ and its bulk modulus B as follows: $v=\rho^{n} B^{m}$. Using dimensional analysis, find the values of constants n and m, respectively. The unit of density ρ is $\mathrm{kg} / \mathrm{m}^{3}$ and that of bulk modulus B is $\mathrm{kg} /\left(\mathrm{m} . \mathrm{s}^{2}\right)$
A) $-1 / 2,+1 / 2$
B) $-1 / 2,-1 / 2$
C) $+1 / 2,-1 / 2$
D) $+1 / 2,+1 / 2$
E) $-1,+1$

Q3.
Two cars A and B travel on a straight line. The displacement of car A is given by $x_{A}(t)=2.60 t+1.20 t^{2}$, where t is in seconds and x_{A} in m . The displacement of car B is given by $x_{B}(t)=2.80 t^{2}-0.20 t^{3}$. At what time the two cars will have the same acceleration?
A) 2.67 s
B) 6.27 s
C) 7.26 s
D) 9.36 s
E) 0.67 s

Q4.
A ball is thrown from ground straight upward with a velocity of $26 \mathrm{~m} / \mathrm{s}$. How long does it take the ball to strike the ground?
A) 5.3 s
B) 2.7 s
C) 1.6 s
D) 0.8 s
E) 7.5 s

Phys101	First Major-082	Zero Version
Coordinator: Naqvi, A.A.	Sunday, April 05, 2009	Page: 2

Q5.
Two automobiles, 150 kilometers apart, are traveling toward each other. One automobile is moving at $60 \mathrm{~km} / \mathrm{h}$ and the other is moving at $40 \mathrm{~km} / \mathrm{h}$. In how many hours will they meet?
A) 1.5
B) 2.0
C) 1.0
D) 2.5
E) 3.0

Q6.
The graph shown in Fig. 1 represents the straight-line motion of a car.
Find its acceleration at $\mathrm{t}=6 \mathrm{~s}$.

Fig. 1
A) $-3.00 \mathrm{~m} / \mathrm{s}^{2}$
B) $+5.00 \mathrm{~m} / \mathrm{s}^{2}$
C) $+3.00 \mathrm{~m} / \mathrm{s}^{2}$
D) $-5.00 \mathrm{~m} / \mathrm{s}^{2}$
E) $+1.0 \mathrm{~m} / \mathrm{s}^{2}$

Q7.
Vector A has a magnitude of 40.0 cm and is directed 60.0 degrees above the negative x axis. Vector \mathbf{B} has magnitude of 20.0 cm and is directed along the positive x -axis. Find the resultant vector (i and \mathbf{j} are unit vectors along positive x and y axes, respectively).
A) $34.6 \mathbf{j ~ c m}$
B) 34.6 i cm
C) $20.0 \mathbf{i ~ c m}$
D) $20.0 \mathbf{j} \mathrm{~cm}$
E) $(20.0 \mathbf{i}+34.6 \mathbf{j}) \mathrm{cm}$

Q8.
Consider two vectors $\mathbf{A}=(3 \mathbf{i}+4 \mathbf{j}) \mathrm{cm}$ and $\mathbf{B}=(-4 \mathbf{i}+3 \mathbf{j}) \mathrm{cm}$. Find the angle between these two vectors.
A) 90 degrees
B) 45 degrees
C) 120 degrees
D) 0 degrees
E) 25 degrees

Q9.
If vector \mathbf{A} is added to vector \mathbf{B}, the result is $(6 \mathbf{i}+1 \mathbf{j}) \mathrm{m}$. If \mathbf{A} is subtracted from \mathbf{B}, the result is $(-4 \mathbf{i}+7 \mathbf{j}) \mathrm{m}$. Find the magnitude of \mathbf{B}.
A) 4 m .
B) 8 m .
C) 2 m .
D) 1 m .
E) 9 m .

Q10.
The airport terminal in Dammam has a 100 m "moving sidewalk" that moves at a constant speed of $1.00 \mathrm{~m} / \mathrm{s}$. A boy boards the moving sidewalk and walks on it with a speed of $2.00 \mathrm{~m} / \mathrm{s}$ to make a round trip. How long does it take this boy to make the round trip on the moving sidewalk?
A) 133 s
B) 331 s
C) 200 s
D) 419 s
E) 255 s

Q11.

Fig. 2 shows a circular path taken by a particle. If the instantaneous velocity of the particle is $\mathbf{v}=-(4.0 \mathrm{~m} / \mathrm{s}) \mathbf{i}+(4.0 \mathrm{~m} / \mathrm{s}) \mathbf{j}$, through which quadrant is the particle moving at that instant if it is traveling counterclockwise?

Phys101	First Major-082	Zero Version
Coordinator: Naqvi, A.A.	Sunday, April 05, 2009	Page: 4

A) First quadrant
B) Third quadrant.
C) Second quadrant
D) Fourth quadrant
E) None of the quadrants

Q12.
A particle leaves the origin with an initial velocity $\mathbf{v}=(3.00 \mathbf{i}+4.00 \mathbf{j}) \mathrm{m} / \mathrm{s}$ and has a constant acceleration $\mathbf{a}=(-1.00 \mathbf{i}-0.400 \mathbf{j}) \mathrm{m} / \mathrm{s}^{2}$. What is its position vector when it reaches its maximum x coordinate?
A) $(4.50 \mathbf{i}+10.2 \mathbf{j}) \mathrm{m}$
B) $(4.50 \mathrm{i}) \mathrm{m}$
C) $(10.2 \mathbf{j}) \mathrm{m}$
D) $(4.50 \mathbf{i}-10.2 \mathbf{j}) \mathrm{m}$
E) $(10.2 \mathbf{i}+4.50 \mathbf{j}) \mathrm{m}$

Q13.
A plane, diving with constant speed at an angle of 37.0 degrees with the vertical, releases a package at a height of 950 m . The package hits the ground 6.00 s after release. Find the speed of the plane.
A) $161 \mathrm{~m} / \mathrm{s}$
B) $200 \mathrm{~m} / \mathrm{s}$
C) $103 \mathrm{~m} / \mathrm{s}$
D) $302 \mathrm{~m} / \mathrm{s}$
E) $98.0 \mathrm{~m} / \mathrm{s}$

Q14.
A meter stick is rotating about one end and completes 500 revolutions every minute. Find the speed and acceleration of its tip (the other end).
A) $52.4 \mathrm{~m} / \mathrm{s} ; 2.74 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$
B) $25.4 \mathrm{~m} / \mathrm{s} ; 27.4 \times 10^{1} \mathrm{~m} / \mathrm{s}^{2}$
C) $5.24 \mathrm{~m} / \mathrm{s} ; 15.5 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$
D) $10.0 \mathrm{~m} / \mathrm{s} ; 7.34 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$
E) $1.50 \mathrm{~m} / \mathrm{s} ; 5.50 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$

Q15.

Phys101	First Major-082	Zero Version
Coordinator: Naqvi, A.A.	Sunday, April 05, 2009	Page: 5

You stand on a spring scale on the floor of an elevator. The scale shows the highest reading when the elevator:
A) moves downward with decreasing speed
B) moves downward with increasing speed
C) remains stationary
D) moves upward with decreasing speed
E) moves upward at constant speed

Q16.

A 70 N block A and a 35 N block B are connected by a string, as shown in Fig 3. If the pulley is massless and the surface is frictionless, the magnitude of the acceleration of the 35 N block is:

Fig. 3
A) $3.3 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.5 \mathrm{~m} / \mathrm{s}^{2}$
C) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
D) $6.7 \mathrm{~m} / \mathrm{s}^{2}$
E) $9.8 \mathrm{~m} / \mathrm{s}^{2}$

Q17.
When a 25.0 kg crate is pushed across a frictionless horizontal floor with a force of 200 N , directed 20° below the horizontal, the magnitude of the normal force of the floor on the crate is:
A) 313 N
B) 680 N
C) 180 N
D) 250 N
E) 210 N

Q18.

A 5 kg block is placed on top of a 10 kg block which is lying on a frictionless horizontal surface, as shown in Fig. 4. A horizontal force F of 60 N is applied to the 10 kg block. Find the static frictional force on 5 kg block from the 10 kg block such that the 5 kg block does not slip.

Fig. 4
A) 20 N to the right
B) 20 N to the left
C) 16 N to the right
D) 16 to the left
E) 0 N

Q19.

A crate is sliding down an incline that is 35° above the horizontal. If the coefficient of kinetic friction is 0.4 , the acceleration of the crate is:
A) $2.4 \mathrm{~m} / \mathrm{s}^{2}$
B) $0.0 \mathrm{~m} / \mathrm{s}^{2}$
C) $5.8 \mathrm{~m} / \mathrm{s}^{2}$
D) $8.8 \mathrm{~m} / \mathrm{s}^{2}$
E) $9.3 \mathrm{~m} / \mathrm{s}^{2}$

Q20.
An automobile moves on a level horizontal road in a circle of radius 30 m . The coefficient of static friction between tires and road is 0.5 . The maximum speed with which this car can travel round this curve without sliding is:
A) $12 \mathrm{~m} / \mathrm{s}$
B) $4.9 \mathrm{~m} / \mathrm{s}$
C) $9.8 \mathrm{~m} / \mathrm{s}$
D) $3.0 \mathrm{~m} / \mathrm{s}$
E) $15 \mathrm{~m} / \mathrm{s}$

