Phys101	First Major-062	Zero Version
Coordinator: Dr. Abdelmonem	Saturday, March 24, 2007	Page: 1

Q1.
From the fact that the average density of the Earth is $5.50 \mathrm{~g} / \mathrm{cm}^{3}$ and its mean radius is 6.37 $\times 10^{6} \mathrm{~m}$, the mass of the Earth is:
A) $5.95 \times 10^{24} \mathrm{~kg}$
B) $3.98 \times 10^{21} \mathrm{~kg}$
C) $7.01 \times 10^{17} \mathrm{~kg}$
D) $2.80 \times 10^{18} \mathrm{~kg}$
E) $5.50 \times 10^{23} \mathrm{~kg}$

Q2.
Suppose $A=\frac{B^{n}}{C^{m}}$, where A has dimensions LT, B has dimensions $\mathrm{L}^{2} \mathrm{~T}^{-1}$, and C has dimensions LT^{2}. Then the exponents n and m have the values:
A) $n=1 / 5 ; m=-3 / 5$
B) $n=2 ; m=3$
C) $n=4 / 5 ; m=-1 / 5$
D) $n=1 / 5 ; m=3 / 5$
E) $n=1 / 2 ; m=1 / 2$

Q3.
A car travels along a straight line at a constant velocity of $18 \mathrm{~m} / \mathrm{s}$ for 2.0 s and then accelerate at $-6.0 \mathrm{~m} / \mathrm{s}^{2}$ for a period of 3.0 s . The average velocity of the car during the whole 5.0 s is:
A) $13 \mathrm{~m} / \mathrm{s}$
B) $18 \mathrm{~m} / \mathrm{s}$
C) $17 \mathrm{~m} / \mathrm{s}$
D) $16 \mathrm{~m} / \mathrm{s}$
E) $10 \mathrm{~m} / \mathrm{s}$

Q4.

The velocity as a function of time for a particle moving along the x-axis is shown in Fig.1. The motion clearly has two different parts: the first part is from $t=0$ to $t=2.0 \mathrm{~s}$, and the second part is from $t=2.0 \mathrm{~s}$ to $\mathrm{t}=6.0 \mathrm{~s}$. Which one of the following statements is correct?

Fig\#

Figure 1
A) At $t=4.0 \mathrm{~s}$ the acceleration is $-5.0 \mathrm{~m} / \mathrm{s}^{2}$
B) At $t=4.0 \mathrm{~s}$ the acceleration is zero
C) From $t=0$ to $t=6.0 \mathrm{~s}$, the displacement is zero
D) From $t=0$ to $t=6.0 \mathrm{~s}$, the displacement is -20 m
E) At $t=1.0 \mathrm{~s}$ the acceleration is $10 \mathrm{~m} / \mathrm{s}^{2}$

Q5.
A particle moves along the x axis. Its position is given by the equation $x=2.0+3.0 t-t^{3}$ with x in meters and t in seconds. The average acceleration from $t=0$ to $t=2.0 \mathrm{~s}$ is:
A) $-6.0 \mathrm{~m} / \mathrm{s}^{2}$
B) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
C) $-2.0 \mathrm{~m} / \mathrm{s}^{2}$
D) $4.0 \mathrm{~m} / \mathrm{s}^{2}$
E) $-5.0 \mathrm{~m} / \mathrm{s}^{2}$

Q6.
An arrow is shot straight up with an initial speed of $98 \mathrm{~m} / \mathrm{s}$. If friction is neglected, how high the arrow can reach?
A) 490 m
B) 980 m
C) 250 m
D) 98 m
E) 150 m

Q7.
\vec{A} and \vec{B} are two perpendicular vectors: $\vec{A}=3.0 \hat{i}$ and $\vec{B}=2.0 \hat{j}$. The magnitude of $\vec{A}-2 \vec{B}$ is:
A) 5.0 .
B) 1.0 .
C) 7.0 .
D) -1.0 .
E) -2.0 .

Q8.
The angle between $\vec{A}=3.00 \hat{i}+4.00 \hat{j}$ and the negative y-axis is:
A) 143°
B) 61.0°
C) 29.0°
D) 209°
E) 241°

Q9.

Three vectors are given as: $\vec{A}=-3.0 \hat{i}, \vec{B}=-5.0 \hat{k}$ and $\vec{C}=2.0 \hat{j}$. The value of $\vec{A} \cdot(\vec{B} \times \vec{C})$ is:
A) -30
B) 0
C) $30 \hat{k}$
D) $-30 \hat{j}$
E) 10

Q10.
The position of a particle is given as $\vec{r}=\left(4.0 t-t^{2}\right) \hat{i}+t^{3} \hat{j}$ where r is in meters and t is in seconds. The particle's acceleration at $t=0 \mathrm{~s}$ is:
A) $(-2.0 \hat{i}) \mathrm{m} / \mathrm{s}^{2}$
B) $(-2.0 \hat{i}+6.0 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$
C) $(2.0 \hat{i}+3.0 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$
D) $(6.0 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$
E) zero

Q11.
A projectile is fired horizontally at a speed of $15 \mathrm{~m} / \mathrm{s}$ from the top of a tower. It lands on the ground at a horizontal distance of 45 m . The height of the tower is:
A) 44 m
B) 98 m
C) 32 m
D) 22 m
E) 88 m

Q12.
If the moon makes a complete circle around the earth in 29 days $\left(=2.5 \times 10^{6} s\right)$ and the distance between the center of earth and the center of the moon is $3.8 \times 10^{8} \mathrm{~m}$, then the magnitude of centripetal acceleration on the moon is:
A) $2.4 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$
B) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
C) $1.6 \mathrm{~m} / \mathrm{s}^{2}$
D) $1.5 \times 10^{2} \mathrm{~m} / \mathrm{s}^{2}$
E) $6.1 \times 10^{-4} \mathrm{~m} / \mathrm{s}^{2}$

Q13.
Two boats A and B leave seaport at the same time. Boat A travels at a speed of $10.0 \mathrm{~m} / \mathrm{s}$ in the $+x$ direction and boat B heads at an angle of 60.0° with the x-axis at a speed of $10.0 \mathrm{~m} / \mathrm{s}$. The velocity of A relative to B is
A) $(5.00 \hat{i}-8.66 \hat{j}) \mathrm{m} / \mathrm{s}$
B) $(20.0 \hat{i}-12.7 \hat{j}) \mathrm{m} / \mathrm{s}$
C) $(36.0 \hat{i}-12.7 \hat{j}) \mathrm{m} / \mathrm{s}$
D) $(22.3 \hat{i}-12.7 \hat{j}) \mathrm{m} / \mathrm{s}$
E) $(5.00 \hat{i}-22.3 \hat{j}) \mathrm{m} / \mathrm{s}$

Q14.

A 500 kg car moves in a vertical roller coaster of radius 10.0 m at a constant speed of 18.0 m / s (see Fig. 2). The magnitude of the force exerted by the track on the car at the bottom of the circle is:

Fig\#

Figure 2
A) $2.11 \times 10^{4} \mathrm{~N}$
B) $6.80 \times 10^{4} \mathrm{~N}$
C) $1.13 \times 10^{4} \mathrm{~N}$
D) $3.47 \times 10^{4} \mathrm{~N}$
E) $5.19 \times 10^{4} \mathrm{~N}$

Q15.

Two blocks of masses $m_{1}=4.00 \mathrm{~kg}$ and $m_{2}=2.00 \mathrm{~kg}$ are connected by a string passing over a massless and frictionless pulley and placed on a frictionless horizontal table as shown in Fig. 3. A force of $F=10.0 \mathrm{~N}$ at an angle of 60.0° with the horizontal is applied to m_{1}. The magnitude of acceleration of the system is:

Fig\#

Figure 3

A) $2.43 \mathrm{~m} / \mathrm{s}^{2}$
B) $9.80 \mathrm{~m} / \mathrm{s}^{2}$
C) $3.27 \mathrm{~m} / \mathrm{s}^{2}$
D) $10.84 \mathrm{~m} / \mathrm{s}^{2}$
E) $1.36 \mathrm{~m} / \mathrm{s}^{2}$

Q16.
A car takes a round turn on a flat circular track at a speed of $8.00 \mathrm{~m} / \mathrm{s}$. The coefficient of static friction between its tires and the track is 0.300 . If the car is at the verge of slipping out of the track at this speed, the radius of the track is:
A) 21.8 m
B) 60.0 m
C) 19.0 m
D) 2.57 m
E) 7.50 m

Q17.
A box of mass M is placed on a 30° inclined plane. The box is sliding with an acceleration equals $\mathrm{g} / 2$ (g is the free fall acceleration). What is the magnitude of the force of friction between the box and the plane?
A) zero
B) $M g / 2$
C) Mg
D) 0.866 Mg
E) 2 Mg

Q18.

Two boxes A and $B\left(m_{\mathrm{A}}=3.0 \mathrm{~kg}\right.$ and $\left.m_{\mathrm{B}}=1.0 \mathrm{~kg}\right)$ are in contact on a horizontal frictionless surface and move along the x -axis (see Fig. 4). A horizontal force $\vec{F}=10.0 \hat{i} N$ is applied on Box A. The net force acting on A is \vec{F}_{1} and on B is \vec{F}_{2}. Which one of the following statements is correct?

Fig\#

Figure 4
A) $\vec{F}_{1}=7.5 \hat{i} \mathrm{~N}$ and $\vec{F}_{2}=2.5 \hat{i} \mathrm{~N}$
B) $\vec{F}_{1}=5.0 \hat{i} \mathrm{~N}$ and $\vec{F}_{2}=-5.0 \hat{i} \mathrm{~N}$
C) $\vec{F}_{1}=2.5 \hat{i} \mathrm{~N}$ and $\vec{F}_{2}=7.5 \hat{i} \mathrm{~N}$
D) $\vec{F}_{1}=0 \mathrm{~N}$ and $\vec{F}_{2}=0 \mathrm{~N}$
E) $\vec{F}_{1}=2.5 \hat{i} \mathrm{~N}$ and $\vec{F}_{2}=-2.5 \hat{i} \mathrm{~N}$

Q19.

Two boxes, one of mass $m=5.00 \mathrm{~kg}$ and the other with an unknown mass M are connected with a string passing over a massless frictionless pulley and are placed on frictionless planes as shown in Fig. 5.What must be the mass M, if it goes down the plane with an acceleration of $a=2.45 \mathrm{~m} / \mathrm{s}^{2}$?

Fig\#
$\mathrm{m}=5.00 \mathrm{~kg}$
$\theta=45.0^{\circ}$
$\phi=30.0^{\circ}$

Figure 5
A) 19.1 kg
B) 8.70 kg
C) 13.5 kg
D) 2.50 kg
E) 10.0 kg

Q20.

Phys101	First Major-062	Zero Version
Coordinator: Dr. Abdelmonem	Saturday, March 24, 2007	Page: 7

A $2.00-\mathrm{kg}$ mass is hanging from the ceiling of an elevator accelerating upward at $\mathrm{a}=2.50$ $\mathrm{m} / \mathrm{s}^{2}$ (see Fig. 6). What is the tension T in the string?

Fig\#

Figure 6
A) 24.6 N
B) 19.8 N
C) 27.7 N
D) 33.4 N
E) 5.50 N

