Phys101	First Major-061	Zero Version
Coordinator: Abdelmonem	Monday, October 30, 2006	Page: 1

Q1.
An aluminum cylinder of density $2.70 \mathrm{~g} / \mathrm{cm}^{3}$, a radius of 2.30 cm , and a height of 1.40 m has the mass of:
A) $\quad 6.28 \mathrm{~kg}$
B) $\quad 45.1 \mathrm{~kg}$
C) $\quad 13.8 \mathrm{~kg}$
D) $\quad 8.50 \mathrm{~kg}$
E) $\quad 25.0 \mathrm{~kg}$

Q2.

A stone is thrown vertically downward from the top of a 40 m tall building with an initial speed of $1.0 \mathrm{~m} / \mathrm{s}$. After 2.0 s the stone will have traveled a distance of
A) 22 m
B) 38 m
C) 40 m
D) 25 m
E) 15 m

Q3.
A particle starts from the origin at $\mathrm{t}=0$ and moves along the positive x -axis. A graph of the velocity of the particle as a function of time is show in Fig 1. The average velocity of the particle between $\mathrm{t}=0.0 \mathrm{~s}$ and 5.0 s is:

Fig\#

Figure 1
A) $\quad 1.4 \mathrm{~m} / \mathrm{s}$
B) $\quad 1.0 \mathrm{~m} / \mathrm{s}$
C) $\quad-2.0 \mathrm{~m} / \mathrm{s}$
D) $\quad 3.5 \mathrm{~m} / \mathrm{s}$
E) $\quad 0 \mathrm{~m} / \mathrm{s}$

Q4.

Phys101	First Major-061	Zero Version
Coordinator: Abdelmonem	Monday, October 30, 2006	Page: 2

At a traffic light, a truck traveling at $10 \mathrm{~m} / \mathrm{s}$ passes a car as it starts from rest. The truck travels at a constant velocity and the car accelerates at $4.0 \mathrm{~m} / \mathrm{s}^{2}$. How much time does the car take to catch up with the truck?
A) $\quad 5.0 \mathrm{~s}$
B) $\quad 2.0 \mathrm{~s}$
C) $\quad 15 \mathrm{~s}$
D) 20 s
E) 25 s

Q5.
The coordinate of a particle in meters is given by $x(t)=2.0 t-2.0 t^{2}$, where the time t is in seconds. The particle is momentarily at rest at time t equal to:
A) $\quad 0.50 \mathrm{~s}$
B) $\quad 0.75 \mathrm{~s}$
C) $\quad 2.0 \mathrm{~s}$
D) $\quad 1.3 \mathrm{~s}$
E) $\quad 4.0 \mathrm{~s}$

Q6.

A vector in the xy plane has a magnitude of 25 m and an x component of +12 m and a positive y component. The angle it makes with the positive y axis is:
A) $\quad 29^{\circ}$
B) 26°
C) $\quad 61^{\circ}$
D) 64°
E) 241°

Q7.

If $\vec{A}=(2.0 \hat{i}-3.0 \hat{j}) m$ and $\vec{B}=(1.0 \hat{i}-2.0 \hat{j}) m$, then $\vec{A}-2 \vec{B}=$
A) $\quad(1.0 \hat{j}) \mathrm{m}$
B) $\quad(-1.0 \hat{j}) \mathrm{m}$
C) $\quad(4.0 \hat{i}-7.0 \hat{j}) \mathrm{m}$
D) $\quad(4.0 \hat{i}+1.0 \hat{j}) \mathrm{m}$
E) $\quad(-4.0 \hat{i}+7.0 \hat{j}) \mathrm{m}$

Q8.
Two vectors \vec{A} and \vec{B} have magnitudes of 10 m and 15 m respectively. The angle between them is 65°. The component (projection) of \vec{B} along \vec{A} is:
A) $\quad 6.3 \mathrm{~m}$

Phys101	First Major-061	Zero Version
Coordinator: Abdelmonem	Monday, October 30, 2006	Page: 3

B) $\quad 4.2 \mathrm{~m}$
C) 0
D) $\quad 9.1 \mathrm{~m}$
E) $\quad 7.5 \mathrm{~m}$

Q9.

A train traveling north at $20 \mathrm{~m} / \mathrm{s}$ turns and then travels south at $20 \mathrm{~m} / \mathrm{s}$. The change in its velocity is:
A) $\quad 40 \mathrm{~m} / \mathrm{s}$ south
B) $20 \mathrm{~m} / \mathrm{s}$ north
C) $20 \mathrm{~m} / \mathrm{s}$ south
D) $40 \mathrm{~m} / \mathrm{s}$ north
E) $\quad 0 \mathrm{~m} / \mathrm{s}$

Q10.
An arrow is shot horizontally from a point P toward X as shown in Fig 2. It hits at a point Y, 0.20 s later. If the speed of the arrow at P is $\mathrm{v}_{\mathrm{o}}=11 \mathrm{~m} / \mathrm{s}$, the distance $P X$ is:

Fig\#

Figure 2
A) $\quad 2.2 \mathrm{~m}$
B) $\quad 1.0 \mathrm{~m}$
C) $\quad 1.8 \mathrm{~m}$
D) $\quad 0.1 \mathrm{~m}$
E) $\quad 0.5 \mathrm{~m}$

Q11.

A boy wishes to swim across a river from A to B. He can swim at $1.0 \mathrm{~m} / \mathrm{s}$ in still water and the river is flowing at $0.50 \mathrm{~m} / \mathrm{s}$ (Fig 3). At what angle θ should he be heading?

Fig\#

Phys101	First Major-061	Zero Version
Coordinator: Abdelmonem	Monday, October 30, 2006	Page: 4

Figure 3
A) $\quad 60^{\circ}$
B) 30°
C) $\quad 45^{\circ}$
D) 20°
E) $\quad 70^{\circ}$

Q12.
A stone is tied to a 0.50 m string and rotated at a constant speed of $2.0 \mathrm{~m} / \mathrm{s}$ in a vertical circle. Its acceleration at the bottom of the circle is:
A) $\quad 8.0 \mathrm{~m} / \mathrm{s}^{2}$, up
B) $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$, down
C) $\quad 8.0 \mathrm{~m} / \mathrm{s}^{2}$, down
D) $\quad 32 \mathrm{~m} / \mathrm{s}^{2}$, up
E) $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$, up

Q13.
A 4.0 kg block is pushed upward a 30° inclined frictionless plane with a constant horizontal force F (Fig 4). If the block moves with a constant speed find the magnitude of the force F.

Fig\#

Figure 4
A) $\quad 23 \mathrm{~N}$
B) $\quad 33 \mathrm{~N}$
C) $\quad 40 \mathrm{~N}$
D) 0 N
E) $\quad 9.8 \mathrm{~N}$

Phys101	First Major-061	Zero Version
Coordinator: Abdelmonem	Monday, October 30, 2006	Page: 5

Q14.
An elevator cab with a total mass of 2000 kg is pulled upward by a cable. If the elevator accelerates at $2.00 \mathrm{~m} / \mathrm{s}^{2}$ upward, find the tension in the cable.
A) $\quad 2.36 \times 10^{4} \mathrm{~N}$
B) $\quad 3.25 \times 10^{4} \mathrm{~N}$
C) $\quad 1.56 \times 10^{4} \mathrm{~N}$
D) $\quad 0.00 \mathrm{~N}$
E) $\quad 9.80 \mathrm{~N}$

Q15.

To measure your weight, you stand on a spring scale on the floor of an elevator. Among the following situations, select the one that gives the highest reading on the scale:
A) The elevator moves upward with increasing speed.
B) The elevator moves upward with decreasing speed.
C) The elevator remains stationary.
D) The elevator moves downward with increasing speed.
E) The elevator moves downward at constant speed.

Q16.
A 7.0 kg block and a 3.0 kg block are connected by a string as shown in Fig 5. If the pulley is massless and the surface is frictionless, the magnitude of the acceleration of the 3.0 kg block is:

Fig\#

Figure 5
A) $\quad 2.9 \mathrm{~m} / \mathrm{s}^{2}$
B) $\quad 3.3 \mathrm{~m} / \mathrm{s}^{2}$
C) $\quad 4.9 \mathrm{~m} / \mathrm{s}^{2}$
D) $\quad 6.7 \mathrm{~m} / \mathrm{s}^{2}$
E) $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$

Q17.
A box with a weight of 50 N rests on a horizontal surface with $\mu_{\mathrm{s}}=0.40$. A person pulls horizontally on it with a force of $\mathrm{F}_{2}=10 \mathrm{~N}$ and it does not move. To start it moving, a second

Phys101	First Major-061	Zero Version
Coordinator: Abdelmonem	Monday, October 30, 2006	Page: 6

person pulls vertically upward on the box with a force F_{1} (see Fig 6). What is the smallest vertical force $\left(F_{1}\right)$ for which the box starts moving?

Fig\#

Figure 6
A) $\quad 25 \mathrm{~N}$
B) $\quad 10 \mathrm{~N}$
C) $\quad 14 \mathrm{~N}$
D) $\quad 5.0 \mathrm{~N}$
E) $\quad 35 \mathrm{~N}$

Q18.
An 8.0 kg block is pushed against a vertical wall by a horizontal force F as shown in Fig 7. If the coefficients of friction between the block and the wall are $\mu_{\mathrm{s}}=0.60$ and $\mu_{\mathrm{k}}=0.30$ then the minimum value for (F) that will prevent the block from slipping is:

Fig\#

Figure 7
A) $\quad 130 \mathrm{~N}$
B) $\quad 260 \mathrm{~N}$
C) $\quad 78 \mathrm{~N}$
D) $\quad 87 \mathrm{~N}$
E) $\quad 24 \mathrm{~N}$

Q19.

Phys101	First Major-061	Zero Version
Coordinator: Abdelmonem	Monday, October 30, 2006	Page: 7

A 2.0 kg block is released from rest the top of a ramp (point A) as shown in Fig 8. The coefficient of kinetic friction between the block and the inclined surface is 0.20 . The speed by which the block hits the bottom (point B) is:

Fig\#

Figure 8
A) $\quad 6.6 \mathrm{~m} / \mathrm{s}$
B) $\quad 11 \mathrm{~m} / \mathrm{s}$
C) $\quad 0.0 \mathrm{~m} / \mathrm{s}$
D) $\quad 2.0 \mathrm{~m} / \mathrm{s}$
E) $\quad 13 \mathrm{~m} / \mathrm{s}$

Q20.
A 1000 kg car moves on a level horizontal circular road of radius 50 m . The coefficient of static friction between the tires and the road is 0.50 . The maximum speed with which this car can round this curve without slipping is:
A) $16 \mathrm{~m} / \mathrm{s}$
B) $\quad 4.9 \mathrm{~m} / \mathrm{s}$
C) $\quad 9.8 \mathrm{~m} / \mathrm{s}$
D) $\quad 3.0 \mathrm{~m} / \mathrm{s}$
E) $\quad 12 \mathrm{~m} / \mathrm{s}$

Formula Sheet for PHYS101 First Major Exam

$$
y=c x^{n} ; \quad \frac{d y}{d x}=c n x^{n-1}
$$

Motion in One Dimension

$$
v=\frac{d x}{d t} ; \quad a=\frac{d v}{d t} ; \quad v_{a v g}=\frac{\Delta x}{\Delta t} ; \quad a_{a v g}=\frac{\Delta v}{\Delta t}
$$

Motion with Constant Acceleration

$v=v_{o}+a t$		$x-x_{o}=v_{o} t+\frac{1}{2} a t^{2}$	
$v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)$	$x-x_{o}=\frac{1}{2}\left(v+v_{o}\right) t$	$x-x_{o}=v t-\frac{1}{2} a t^{2}$	

Free Fall

$$
a=-\mathrm{g} ; \quad g=9.80 \mathrm{~m} / \mathrm{s}^{2}
$$

Vector Multiplications

$\vec{a} \cdot \vec{b}=a b \cos \phi \quad|\vec{a} \times \vec{b}|=a b \sin \phi$

Motion in Two Dimensions

$$
\begin{aligned}
\vec{v} & =\frac{d \vec{r}}{d t} ; \quad \vec{a}=\frac{d \vec{v}}{d t} \\
\vec{r}-\vec{r}_{o} & =\vec{v}_{o} t+\frac{1}{2} \vec{a} t^{2} ; \quad \vec{v}=\vec{v}_{o}+\vec{a} t
\end{aligned}
$$

Projectile Motion

$a_{x}=0$	$a_{y}=-9.80 \mathrm{~m} / \mathrm{s}^{2}$
$v_{x}=\nu_{o} \cos \theta_{o}$	$v_{y}=v_{o} \sin \theta_{o}-g t$
$x-x_{o}=v_{o} \cos \theta_{o} t$	$y-y_{o}=v_{o} \sin \theta_{o} t-\frac{1}{2} g t^{2}$

Uniform Circular Motion

$$
\begin{aligned}
a & =\frac{v^{2}}{r} \\
T & =\frac{2 \pi r}{v}
\end{aligned}
$$

Relative Motion

$$
\vec{v}_{P A}=\vec{v}_{P B}+\vec{v}_{B A}
$$

$$
\vec{v}_{A B}=\text { velocity of A relative to } \mathrm{B}=-\vec{V}_{B A}
$$

Newton's Second Law

$$
\sum \vec{F}=m \vec{a} \Rightarrow \sum F_{x}=\mathrm{ma}_{x} ; \quad \sum F_{y}=\mathrm{ma}_{y}
$$

Friction

$$
f_{s, \max }=\overline{\mu_{s} N ; \quad f_{k}}=\mu_{k} N
$$

