

# **Department of Physics**



PHYS101-052 MAJOR 1 EXAM <u>Test Code</u>: 100

25 March 2006 Exam Duration: 2hrs (from 6:00pm to 8:00pm)

| Name:           |  |
|-----------------|--|
| Student Number: |  |
| Section Number: |  |

- 1. A nucleus of volume  $3.4 \times 10^3$  fm<sup>3</sup> and mass of  $1.0 \times 10^2$  u has a density of: (1 fm =  $10^{-15}$  m, 1 u =  $1.7 \times 10^{-27}$  kg)
  - A)  $5.0 \times 10^{16} \text{ kg/m}^3$
  - B)  $1.0 \times 10^3$  kg/m<sup>3</sup>
  - C)  $3.4 \times 10^{14} \text{ kg/m}^3$ D)  $12 \times 10^3 \text{ kg/m}^3$

  - E)  $3.6 \times 10^{13} \text{ kg/m}^3$
- 2. An object starts from rest at the origin and moves along the x axis with a constant acceleration of 4 m/s<sup>2</sup>. Its average velocity as it goes from x = 2 m to x = 18 m is:
  - A) 1 m/s
  - B) 2 m/s
  - C) 6 m/s
  - D) 5 m/s
  - E) 8 m/s
- 3. Two cars are 150 km apart and traveling toward each other. One car is moving at 60. km/h and the other is moving at 40. km/h. In how many hours will they meet?
  - A) 2.5 h
  - B) 2.0 h
  - C) 1.9 h
  - D) 1.5 h
  - E) 1.2 h

4. The coordinate of a particle in meters is given by  $x(t) = 16t - 3.0t^3$ , where the time t is in seconds. The particle is momentarily at rest at time=

- A) 0.75 s
- B) 1.3 s
- C) 5.3 s
- D) 7.3 s
- E) 9.3 s
- 5. A stone and a ball are thrown vertically upward with different initial speeds: 20 m/s for the stone and 10 m/s for the ball. If the maximum height reached by the ball is H then the maximum height reached by the stone is:
  - A) 4 H
  - B) 2 H
  - C) H
  - D) H/2
  - E) H/4

- 6. If  $\vec{A} = \hat{i} + \hat{j}$  and  $\vec{B} = \hat{i} \hat{j}$  then:
  - A) A and B must be parallel and in the same direction
  - B) A and B must be parallel and in opposite directions
  - C) magnitude of A is not the same as magnitude of B
  - D) the angle between A and B must be  $60^{\circ}$
  - E) the angle between A and B must be  $90^{\circ}$

7. Let  $\vec{A} = 2.0\hat{i} - 3.0\hat{k}$  and  $\vec{B} = 2.0\hat{i} + \hat{k}$ . The vector  $\vec{D} = (\vec{A} - \vec{B}) \times \vec{A}$  is:

- A)  $2.0\hat{i} 3.0\hat{k}$
- B)  $4.0\hat{i} 2.0\hat{k}$
- C)  $-12\hat{i}$ D)  $\hat{j} + \hat{k}$
- E)  $-8.0\hat{j}$

<sup>8</sup>. In Fig 1,  $\vec{A} = (12m, 60^\circ)$  and  $\vec{B} = (8m, 300^\circ)$ . The x component of  $(\vec{A} - \vec{B})$  is:

- A) 8 m
- B) 10 m
- C) 2 m
- D) 14 m
- E) 15 m
- 9. The plane shown in Fig 2, is in a level flight at a height of 490 m and a speed of 50 m/s when a package was released. The horizontal distance between the release point and the point where the package strikes the ground is:
  - A) 150 m
  - B) 300 m
  - C) 980 m
  - D) 500 m
  - E) 100 m

10. An object moves with a constant acceleration  $\vec{a} = -8.0\hat{i} + 7.0\hat{j}$  m/s<sup>2</sup>. At t=0 the velocity  $\vec{v_o}$ is  $40\hat{i}$  m/s. The velocity at time t = 5.0 s is:

- A)  $-40\hat{i} + 35\hat{j} m/s$
- B)  $-40\hat{i} 35\hat{j} m/s$
- C)  $35\hat{j} m/s$
- D)  $40\hat{i} 35\hat{j} m/s$
- E)  $40\hat{i} + 35\hat{j} = m/s$

- 11. An object is moving on a circular path of radius 3.0 meters at a constant speed. The time required for one revolution is 4.7 s. The acceleration of the object is:
  - A)  $0.216 \text{ m/s}^2$
  - B) 5.36  $m/s^2$
  - C)  $0.756 \text{ m/s}^2$
  - D)  $1.36 \text{ m/s}^2$
  - E) zero
- 12. Fig 3 shows a boat is sailing at 12 km/h 30° W of N relative to a river that is flowing East (E) at 6.0 km/h relative to ground. As observed from the ground, the boat is sailing:
  - A) due N
  - B)  $30^{\circ}$  E of N
  - C)  $30^{\circ}$  W of N
  - D)  $45^{\circ} \text{ E of N}$
  - E) due W
- 13. A 5.0-kg mass is suspended by a string from the ceiling of an elevator that is moving downward with constant acceleration of 2.8 m/s<sup>2</sup>. The tension in the string is:
  - A) 49 N
  - B) 35 N
  - C) 50 N
  - D) 12 N
  - E) 63 N
- 14. A 3.0-kg block slides on a frictionless 37° incline plane. A vertical force of 15 N is applied to the block (see Fig 4). The acceleration of the block is:
  - A)  $3.8 \text{ m/s}^2$  up the incline B)  $5.9 \text{ m/s}^2$  up the incline

  - C)  $2.9 \text{ m/s}^2$  down the incline
  - D) 8.7  $\text{m/s}^2$  down the incline
  - E) 4.4 m/s<sup>2</sup> down the incline
- 15. Two blocks of mass  $m_1 = 5.0$  kg and  $m_2 = 10$ . kg are connected by a massless rod and slide on a frictionless 30° incline as shown in Fig 5. The tension in the rod is:
  - A) 38 N
  - B) 62 N
  - C) 98 N
  - D) 49 N
  - E) zero

16. A 2.3-N weight is suspended by a string from a ceiling and held at an angle  $\theta$  from the vertical by 4.0-N horizontal force F as shown in Fig 6. The tension in the string is:

- A) 4.0 N
- B) 0.5 N
- C) 6.3 N
- D) 4.6 N
- E) 1.7 N

- 17. A block rests on a rough incline and has coefficients of friction  $\mu_k = 0.20$  and  $\mu_s = 0.30$ . If the incline angle increases, at what angle does the block start moving?
  - A) 11.3°
  - B) 16.7°
  - C) 33.7°
  - D) 35.8°
  - E) 56.3°
- 18. A car is moving in a horizontal circular track of radius R=50.0 m. The coefficient of static friction between the car wheels and the track is  $\mu_s$ = 0.250. What would be the car speed at which the car starts sliding out side the track?
  - A) 49.4 m/s
  - B) 33.0 m/s
  - C) 54.5 m/s
  - D) 11.1 m/s
  - E) 45.4 m/s
- 19. A 5.0-kg block is at rest on a rough horizontal surface. The coefficient of static friction between the block and the surface is  $\mu_s = 0.4$ . If a horizontal force of 15.0 N is acted on the block, what would be the magnitude of the friction force?
  - A) 15.0 N
  - B) 19.6 N
  - C) 12.0 N
  - D) 14.0 N
  - E) 18.5 N
- 20. Three equal mass blocks each of mass =2.0 kg can move together over a horizontal frictionless surface. Two forces,  $\vec{F_1} = 40\hat{i}N$  and  $\vec{F_2} = -10\hat{i}N$  are applied on the three masses system as shown in the Fig 7. The net force on the middle mass is:
  - A)  $-20\hat{i}N$
  - B)  $30\hat{i}N$
  - C)  $10\hat{i}N$
  - D)  $5\hat{i}N$
  - E)  $40\hat{i}N$







Figure 7

# PHYS101 First Major Exam Formula Sheet

# $y = cx^{n};$ $\frac{dy}{dx} = cnx^{n-1}$ **Motion in One Dimension**

$$v = \frac{dx}{dt};$$
  $a = \frac{dv}{dt};$   $v_{avg} = \frac{\Delta x}{\Delta t};$   $a_{avg} = \frac{\Delta v}{\Delta t}$ 

#### **Motion with Constant Acceleration**

| $v = v_o + at$                      |                         | $x - x_o = v_o t + \frac{1}{2}at^2$ |                                   |
|-------------------------------------|-------------------------|-------------------------------------|-----------------------------------|
| $v^{2} = v_{o}^{2} + 2a(x - x_{o})$ | $x - x_o = \frac{1}{2}$ | $\frac{1}{2}(v + v_o)t$             | $x - x_o = v t - \frac{1}{2}at^2$ |

# Free Fall a = -g; $g = 9.8m/s^{2}$ Vectors $\vec{a} \cdot \vec{b} = ab \cos \phi$ $|\vec{a} \times \vec{b}| = ab \sin \phi$ Motion in Two Dimensions $\vec{v} = \frac{d\vec{r}}{dt};$ $\vec{a} = \frac{d\vec{v}}{dt}$ $\vec{r} - \vec{r}_{o} = \vec{v}_{o}t + \frac{1}{2}\vec{a}t^{2};$ $\vec{v} = \vec{v}_{o} + \vec{a}t$ Projectile Motion

| $a_x = 0$                        | $x - x_o = v_o \cos \theta_o t$                     |  |  |
|----------------------------------|-----------------------------------------------------|--|--|
| $a_y = -g = -9.80 \text{ m/s}^2$ | $y - y_o = v_o \sin \theta_o t - \frac{1}{2} g t^2$ |  |  |
| $H = v_o^2 \sin^2 \theta_o / 2g$ | $R = v_o^2 \sin 2\theta_o / g$                      |  |  |

#### **Uniform Circular Motion**

$$a = \frac{v^{2}}{r}$$

$$T = \frac{2\pi r}{v}$$
**Relative Motion**

$$\vec{v}_{PA} = \vec{v}_{PB} + \vec{v}_{BA}$$

$$\vec{v}_{AB} = \text{velocity of A relative to B} = -\vec{v}_{BA}$$

$$\frac{\text{Newton's Second Law}}{\sum \vec{F} = m\vec{a}} \implies \sum F_{x} = \text{ma}_{x}; \quad \sum F_{y} = \text{ma}_{y}$$
**Friction**

$$f_{s,\max} = \mu_s N; \quad f_k = \mu_k N$$

### Answer Key

- 1. A
- 2. E
- 3. D 4. B
- 5. A
- 6. E
- 7. E
- 8. C
- 9. D
- 10. C 11. B
- 11. D 12. A
- 13. B
- 14. C
- 15. E 16. D
- 10. D 17. B
- 18. D
- 19. A
- 20. C