Q1 Q0 An empty fuel tank of a car needs 50 liters of gasoline Q0 to fill up. Find the volume of the fuel tank in m**3.
Q0 (1 milliliter = $1 \mathrm{cm**} 3$ )
Q0
A1 $\quad 0.050$
A2 $50 \quad 000$
A3 50
A4 500
A5 0.50
Q0
Q2 Q0 Fig. 1 shows a graph of position versus time for a particle QO moving along the $x$ axis. What is the total distance travelled QO by the particle in 15 s?
Q0
A1 12.5 m
A2 7.5 m
A3 10 m
A4 5.0 m
A5 22.5 m
Q0
Q3 Q0 An object starts from rest at the origin and moves along the x-axis with a constant acceleration of $5.0 \mathrm{~m} / \mathrm{s}^{* *} 2$. Find its
$Q 0$ average velocity as it goes from $x=0 \mathrm{~m}$ to $\mathrm{x}=10 \mathrm{~m}$.
Q0
A1 $5.0 \mathrm{~m} / \mathrm{s}$
$10 \mathrm{~m} / \mathrm{s}$
A3 $17 \mathrm{~m} / \mathrm{s}$
A4 $3.0 \mathrm{~m} / \mathrm{s}$
A5 $8.0 \mathrm{~m} / \mathrm{s}$
Q0
Q4. Q0 Starting at time $t=0$, an object moves along a straight line
Q0 with a velocity in m/s given by $v=72$ - 2 t**2,
Q0 where $t$ is in seconds. Find its acceleration when it stops
Q0 momentarily.
Q0
A1 -24 m/s**2
A2 0
A3 $-4.0 \mathrm{~m} / \mathrm{s}^{* *} 2$
A4 $-9.8 \mathrm{~m} / \mathrm{s} * * 2$
A5 $-4.9 \mathrm{~m} / \mathrm{s}^{* *} 2$
Q0
Q5 Q0 A stone is thrown vertically upward with an initial speed of
Q0 $15 \mathrm{~m} / \mathrm{s}$. What is its speed at a height of 10 m from its release
Q0 point?
Q0
A1 $5.4 \mathrm{~m} / \mathrm{s}$
A2 0
A3 It will not reach the height of 10 m .
A4 $9.8 \mathrm{~m} / \mathrm{s}$
A5 $12 \mathrm{~m} / \mathrm{s}$
Q0
Q6 Q0 The angle between the two vectors $A=2 i+4 j$ and
QO B = 4 i - 2 j is:
Q0
A1 90 degrees
A2 27 degrees
A3 39 degrees
A4 180 degrees



FIGURE-2


FIGURE-5


FIGURE-7

50 degrees

Q7 Q0 As shown in Fig. 3, a block moves down on a 45-degree inclined
Q0 plane of 2.5 m length, then horizontally for another 2.5 m , and
Q0 then falls down vertically a height of 2.5 m . Find the magnitude
$Q 0$ and direction of the resultant displacement vector of the block.
Q0
A1 6.0 m and 45 degrees below horizontal axis
A2 3.5 m and 30 degrees below horizontal axis
A3 6.0 m and 30 degrees below horizontal axis
A4 3.5 m and 45 degrees below horizontal axis
A5 5.5 m and 60 degrees below horizontal axis
Q0
Q8 Q0 Given the vectors $A=3 j+6 k, B=15 i+21 k$. Find the
magnitude of vector $C$ that satisfies equation $2 A+3 C-B=0$.
Q0
A1 6.16
5.48
18.5
6.71
8.60
Q0
9 Q
At $t=0$, a particle moving in the $x y$ plane with a constant
acceleration of $a=(2 i+4 j) ~ m / s * * 2 ~ h a s ~ a ~ v e l o c i t y ~ V o=(-4 j) ~ m / s ~$
at the origin. Find the speed of the particle at $t=3 \mathrm{~s}$.
Q0
A1 $10 \mathrm{~m} / \mathrm{s}$
A2 0
A3 $4 \mathrm{~m} / \mathrm{s}$
A4 $24 \mathrm{~m} / \mathrm{s}$
A5 $20 \mathrm{~m} / \mathrm{s}$
Q0
10 Q0 A ball is projected from the ground into the air with velocity
Q0 Vo. At a height of 10.0 m the velocity is observed to be
$V=8.5 i+9.1 j$ in $\mathrm{m} / \mathrm{s}$. Find Vo.
$(8.5 i+16.7 j) \mathrm{m} / \mathrm{s}$
$(16.7 \mathrm{i}+9.1 \mathrm{j}) \mathrm{m} / \mathrm{s}$
$(8.5 i+9.1 j) \mathrm{m} / \mathrm{s}$
$(2.5 i+3.1 \mathrm{j}) \mathrm{m} / \mathrm{s}$
$(6.2$ i $+1.1 \mathrm{j}) \mathrm{m} / \mathrm{s}$
Rain is falling vertically at constant speed of $6.0 \mathrm{~m} / \mathrm{s}$.
At what angle from the vertical do the rain appear to be falling
as viewed by the driver of a car traveling on a straight, level
road with a speed of $8.0 \mathrm{~m} / \mathrm{s}$ ?
53 degrees
37 degrees
49 degrees
41 degrees
0 degree
Q0
12 Q0 The speed of a particle moving in uniform circular motion is
QO doubled while the radius of the path of the particle is
increased by a factor of 4. The new centripetal force needed
will be :
the same as before
half as great as before

```
A3 twice as great as before
```

A4 $1 / 4$ of its original value
A5 four times as great as before
Q0
13 Q0 A ball is thrown horizontally with speed Vo from the edge of
Q 0 a cliff 35 m high. The ball strikes the ground at a point 80 m
QO from the base of the cliff. Find Vo.
Q0
A1 $30 \mathrm{~m} / \mathrm{s}$
A2 $9.8 \mathrm{~m} / \mathrm{s}$
A3 $2.5 \mathrm{~m} / \mathrm{s}$
A4 $22 \mathrm{~m} / \mathrm{s}$
A5 $45 \mathrm{~m} / \mathrm{s}$
Q0
14 Q0
As shown in Fig. 7, a $25-\mathrm{kg}$ box is pushed across a frictionless
horizontal floor with a force of 20 N , directed at an angle of
20 degrees below the horizontal. The magnitude of the
acceleration of the box is:
Q0
A1 $0.75 \mathrm{~m} / \mathrm{s} * * 2$
A2 $0.27 \mathrm{~m} / \mathrm{s} * * 2$
A3 $17 \mathrm{~m} / \mathrm{s} * * 2$
A4 $21 \mathrm{~m} / \mathrm{s} * * 2$
A5 $0.82 \mathrm{~m} / \mathrm{s}^{* *} 2$
Q0
15 Q0
Q0
object of mass $M=10$ kg moving on frictionless horizontal
surface is subjected to two applied forces as shown in Fig. 2.
In which situation is the object accelerating to the right?
(d)
(a)
(c)
(b)
(e)

Q0
16 Q0 Two blocks A (MA $=4 \mathrm{~kg})$ and $B(M B=20 \mathrm{~kg})$ are in contact with 0 each other and are placed on a horizontal frictionless surface. A $36-\mathrm{N}$ constant force is applied to $A$ as shown in Fig. 4. The magnitude of the force exerted on A by B is

30 N
0 N
36 N
15 N
3.6 N

0
17 Q0 Two masses $\mathrm{m} 1=2 \mathrm{~kg}, \mathrm{~m} 2=4 \mathrm{~kg}$ are connected by a light string
Q0 that passes over a frictionless and massless pulley (see Fig. 5). 0 Find the magnitude of the acceleration of the masses.
Q0
A1 $3.27 \mathrm{~m} / \mathrm{s} * * 2$
A2 $2.15 \mathrm{~m} / \mathrm{s} * * 2$
A3 $10.5 \mathrm{~m} / \mathrm{s}^{* *} 2$
A4 $0.75 \mathrm{~m} / \mathrm{s} * * 2$
A5 $1.23 \mathrm{~m} / \mathrm{s}^{* *} 2$
Q0
18 Q0 A stone, of mass $m$, is attached to a strong string and rotates $Q 0$ in a vertical circle of radius $R$. At the bottom of the path the
Q0 tension in the string is 3 times the weight of the stone. The
QO speed of the stone at this point is given by .

```
Q0
A1 Sqrt(2gR).
2*Sgrt(gR)
2*gR
Sqrt(3gR)
Sqrt(gR/2)
Q0
19 Q0 A block attached to a string, rotates counter-clockwise in a
QO circle on a smooth horizontal surface. The string breaks at
O point P (Fig. 6). What path will the block follow?
Q0
A1 path B
2 path A
path C
path D
path E
Q0
20 Q0 A box slides down a 30 degree incline with an acceleration =
Q0 3.2 m/s**2. Find the coefficient of kinetic friction between
Q0 the box and the incline.
Q0
A1 0.20
A2 0.25
A3 0.15
A4 0.30
A5 0.62
```

