PHYS101 Major-I (012)
Q1 Q0 Speed of sound is $340 \mathrm{~m} / \mathrm{s}$. Express this in millimeters
ch Q0 per nanosecond[$1 \mathrm{~ns}=10 * *(-9) \mathrm{s}]$.

1. Q0

A1 3.40* 10** (-4) $\mathrm{mm} / \mathrm{ns}$
A2 3.40* 10** $(-6) \mathrm{mm} / \mathrm{ns}$
A3 3.40* 10** $(-3) \mathrm{mm} / \mathrm{ns}$
A4 3.40* 10** $(+3) \mathrm{mm} / \mathrm{ns}$
A5 3.40* 10** $(+6) \mathrm{mm} / \mathrm{ns}$
Q0
Q2 Q0 The position of an object moving along an X-axis is
ch $Q 0$ given by $x=3+12 * t-t * * 3$, where x is in meters
$2 Q 0$ and t is in seconds. At what time is the particle
Q0 momentarily at rest?
Q0
A1 2 s
A2 4 s
A3 3 s
A4 1 s
A5 0 s
Q0
Q3 Q0 A rock is dropped ($\mathrm{Vo}=0$) from a $100-\mathrm{m}$ high cliff. It
ch Q0 takes the rock 3.2 s to fall the first 50 m . How long
2 Q does it take to fall the second 50 m ?
Q0
A1 1.3 s
A2 1.6 s
34.8 s
43.2 s

A5 0.0 s
Q0
Q4 Q0 The position-time graph for an object is a straight line
Ch QO with a positive slope. The object has
2 Q0
A1 a constant velocity
A2 a decreasing acceleration
A3 an increasing velocity
4 an increasing acceleration
a decreasing velocity
Q0
Q5 Q0 A balloon is going up with a speed of $10 \mathrm{~m} / \mathrm{s}$ and is
ch $Q 0100 \mathrm{~m}$ above the ground when a package is dropped from
2 Q0 the balloon. How long does the package take to reach
Q0 the ground?
Q0
A1 5.7 s
A2 4.0 s
A3 3.7 s
A4 2.0 s
A5 6.0 s
26 Q0
ch Q0 The two vectors A and B shown in Fig. 1 have equal
3 Q 0 magnitudes of 10.0 m . Find the magnitude of the
QO resultant, R, of these vectors and the angle theta
Q0 it makes with the positive x-axis.
Q0
A1 $R=14.1 \mathrm{~m}$, THETA $=75$ degrees
A2 $R=10.0 \mathrm{~m}, \mathrm{THETA}=90$ degrees
A3 $R=12.0 \mathrm{~m}$, THETA $=60$ degrees
A4 $R=16.0 \mathrm{~m}, \mathrm{THETA}=30$ degrees
A5 $R=20.0 \mathrm{~m}$, THETA $=45$ degrees

FIGURE 4

FIGURE 2

FIGURE 3

FIGURE 6

Q0
Q7 Q0 A vector in the $x y-p l a n e ~ h a s ~ a ~ m a g n i t u d e ~ o f ~ 25.0 ~ a n d ~$
ch Q0 an x-component of 12.0 . The angle that it makes with
QO the positive x-axis is:
3 Q 0
A1 61.3 degrees
25.6 degrees
28.7 degrees
64.3 degrees
95.3 degrees

Q0
Q8 Q0 The unit vectors in the positive directions of the x, ch Q 0 y, and z axes are labeled i, j, and k. The value of
3 Q0 [i.(j x k)] is:
Q0
A1 +1
A2 -1
A3 0
A4 -i
A5 +j
Q0
Q9 Q0 Car A is moving with a speed of $30 \mathrm{~km} / \mathrm{h}$ along the
ch $Q 0$ positive x-axis and car B is moving with a speed of
4 Q0 $40 \mathrm{~km} / \mathrm{h}$ along the positive y-axis. What is the
QO velocity of car B with respect to car A?
Q0
A1 (-30i + 40j) km/h
A2 $(30 i+40 j) \mathrm{km} / \mathrm{h}$
A3 (-30i - 40j) km/h
A4 (40i + 30j) km/h
A5 ($40 \mathrm{i}-30 \mathrm{j}) \mathrm{km} / \mathrm{h}$
Q0
Q1020 A ball leaves the ground with a speed of $50 \mathrm{~m} / \mathrm{s}$ at
ch $Q 0$ an angle of 60 degrees with the horizontal. Find its
4 Q0 speed at its heighest point.
Q0
A1 $25 \mathrm{~m} / \mathrm{s}$
A2 $50 \mathrm{~m} / \mathrm{s}$
A3 $0.0 \mathrm{~m} / \mathrm{s}$
A4 $43 \mathrm{~m} / \mathrm{s}$
A5 $10 \mathrm{~m} / \mathrm{s}$
Q0
Q11Q0 A stone is thrown from the ground into the air with ch Q0 an initial velocity $V=(5.0 i+9.0 j) \mathrm{m} / \mathrm{s}$. To what 4 Q0 maximum height will the stone rise?

Q0
A1 4.1 m
A2 1.3 m
A3 9.0 m
A4 5.0 m
A5 7.0 m
Q0
Q12Q0 The airplane shown in Fig. 2 is in level flight at an
ch Q 0 altitude of 500 m and a speed of $41.7 \mathrm{~m} / \mathrm{s}$. At what
4 Q0 distance d should it release a bomb to hit the target at point A?
Q0
A1 421 m
A2 150 m
A3 300 m
A4 590 m

```
    A5 832 m
    QO
Q13Q0 A constant force, F, acts on a 19-kg particle. The particle,
ch Q0 initially at rest, moves a distance of 22 m in 3.8 s. Find
5 \mp@code { Q 0 ~ t h e ~ m a g n i t u d e ~ o f ~ t h e ~ f o r c e ~ F . }
    Q0
    A1 58 N
    A2 86 N
    50 N
    4 1 ~ N
    12 N
    Q0
Q14Q0 In Fig.3, m1 = 22 kg and m2 = 37 kg. The masses are connected
ch Q0 by a light, horizontal cord and are being pulled across a
5 \mp@code { Q 0 ~ s m o o t h ~ l e v e l ~ s u r f a c e ~ b y ~ a ~ h o r i z o n t a l ~ f o r c e ~ F ~ = ~ 4 6 ~ N . ~ F i n d ~ t h e }
    Q0 tension in the cord.
    Q0
    A1 17 N
    A2 29 N
    46 N
    31 N
63 N
    Q0
Q15Q0 Three books (X, Y, and Z) rest on a table as shown in Fig. 4.
ch Q0 The weight of each book is also indicated in the Figure. The
5 Q0 magnitude of the force of book Z on book Y is:
    Q0
    A1 9.0 N
    A2 4.0 N
    A3 5.0 N
    14 N
19 N
Q0
Q16Q0 Two blocks weighing 25 kg and 35 kg respectively, are
connected by a string that passes over a massless pulley
as shown in Fig. 5. The tension in the string is:
286 N
210 N
500 N
3 5 0 ~ N
250 N
Q0
Q17Q0 A 90-kg man stands in an elevator that is moving up at
ch Q0 a constant speed of 5.0 m/s. The magnitude of the force
5 \mp@code { Q 0 ~ e x e r t e d ~ b y ~ h i m ~ o n ~ t h e ~ f l o o r ~ i s : }
    Q0
    A1 882 N
    A2 0 N
    A3 94 N
    A4 450 N
    A5 49 N
    Q0
Q18Q0 A 3.5-kg block is pulled at constant velocity along
ch Q0 horizontal floor by a force F = 15 N that makes an angle
6 Q0 of 40 degrees with the horizontal ( Fig.6). Find the
Q0 magnitude of the force of friction between the block and
Q0
Q0
A1 11 N
A2 15 N
```

```
    34 N
    0.0 N
    26 N
    Q0
Q19Q0 Find the minimum coefficient of static friction between
ch QO the tyres of a car and a level road if the car is to make
6 ~ Q O ~ a ~ c i r c u l a r ~ t u r n ~ o f ~ r a d i u s ~ 9 0 ~ m ~ a t ~ a ~ s p e e d ~ o f ~ 6 0 ~ k m / h .
    Q0
    A1 0.315
    A2 0.521
    A3 0.423
    A4 0.214
    A5 0.125
    Q0
Q20Q0 One end of a 1.0-m string is fixed, the other end is attached
ch Q0 to a 1.0-kg stone. The stone swings in a vertical circle,
6 Q0 and has a speed of 5.0 m/s at the top of the circle.
    QO The tension in the string at this point is approximately:
    Q0
    A1 15 N
    A2 11 N
    A3 28 N
    A4 31 N
    A5 10 N
```

