Q1.
Find the mass of a solid lead cube with an edge of 2.00 ft if the density of lead is $11.4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ (1.00 m is equivalent to 3.28 ft).
A) $2.58 \times 10^{3} \mathrm{~kg}$
B) $9.08 \times 10^{3} \mathrm{~kg}$
C) $4.57 \times 10^{2} \mathrm{~kg}$
D) $6.43 \times 10^{3} \mathrm{~kg}$
E) $1.29 \times 10^{3} \mathrm{~kg}$

Ans:
$\mathrm{V}=\mathrm{a}^{3} ; \mathrm{a}=(2.00 \mathrm{ft})\left(\frac{1.0 \mathrm{~m}}{3.28 \mathrm{ft}}\right)=0.610 \mathrm{~m}$
$\mathrm{V}=(0.610)^{3} \mathrm{~m}^{3}=0.227 \mathrm{~m}^{3}$
$\mathrm{m}=\rho \mathrm{V}=\left(11.35 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(0.227 \mathrm{~m}^{3}\right)=2.58 \times 10^{3} \mathrm{~kg}$

Q2.
The speed v in m / s of an automobile is given by $v=a t^{3}+b t^{2}$, where the time t is in seconds. The dimensions of a and b are, respectively:
A) $\mathrm{LT}^{-4} ; \mathrm{LT}^{-3}$
B) $\mathrm{LT}^{+4} ; \mathrm{LT}^{+3}$
C) $\mathrm{LT}^{+3} ; \mathrm{LT}^{-2}$
D) $\mathrm{LT}^{+4} ; \mathrm{LT}^{-3}$
E) $\mathrm{LT}^{-2} ; \mathrm{LT}^{-1}$

Ans:
$\mathrm{v}=\mathrm{at}{ }^{3}+\mathrm{bt}^{2}$
Each term on the right should have the dimension of v (i.e., LT^{-1})
$\mathrm{a}=\mathrm{LT}^{-1} \times \mathrm{T}^{-3}=\mathrm{LT}^{-4}$
$\mathrm{b}=\mathrm{LT}^{-1} \times \mathrm{T}^{-2}=\mathrm{LT}^{-3}$

Q3.
Two automobiles are 3.00×10^{2} kilometers apart and traveling toward each other. One automobile is moving at $60.0 \mathrm{~km} / \mathrm{h}$ and the other is moving at $40.0 \mathrm{~km} / \mathrm{h}$. In how many hours will they meet?
A) 3.00
B) 2.00
C) 1.75
D) 5.50

E) 7.50

Let they meet after time t at point A
$\left.\begin{array}{l}\mathrm{x}_{1}=\mathrm{v}_{1} \mathrm{t} \\ \mathrm{x}_{2}=\mathrm{v}_{2} \mathrm{t}\end{array}\right\} \Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}=\mathrm{v}_{1} \mathrm{t}+\mathrm{v}_{2} \mathrm{t}$
$300=(60+40) t \Rightarrow t=\frac{300}{100}=3.00$ hours

Q4.
Figure 1 shows a velocity-time graph for a car moving in a straight line. At point Q the car must be:

Fig\# 1
A) traveling in the opposite direction to that at point P
B) moving with zero acceleration
C) traveling downhill
D) traveling below ground-level
E) moving with a higher speed than that at point P

Q5.
A ball is thrown vertically upward with an initial velocity v_{o} and reaches its maximum height in 8.0 s . At what time, after it was thrown, will it have velocity ($-v_{o} / 2$)?
A) 12 s
B) 16 s
C) 4.0 s
D) 20 s
E) 10 s

Ans:
Point A: $\neq \mathrm{v}_{0}-\mathrm{gt} \Rightarrow \mathrm{v}_{0}=9.8 \times 8 \mathrm{~m} / \mathrm{s}=78.4 \mathrm{~m} / \mathrm{s}$
Point B: $\mathrm{v}=0-\mathrm{gt}^{\prime}$
$-\mathrm{v}_{0} / 2=0-\mathrm{gt}^{\prime} \Rightarrow \mathrm{t}^{\prime}=\frac{\mathrm{v}_{0}}{2 \mathrm{~g}}=4.0 \mathrm{~s}$
Time $=(8+4)=12 \mathrm{~s}$

Q6.
A car travelling at $20.0 \mathrm{~m} / \mathrm{s}$ is 30.0 m from a wall when the driver applies the brakes. The car hits the wall 2.00 s later. How fast is the car travelling just before it hits the wall (assume constant acceleration)?
A) $10.0 \mathrm{~m} / \mathrm{s}$
B) $11.8 \mathrm{~m} / \mathrm{s}$
C) $20.0 \mathrm{~m} / \mathrm{s}$
D) $8.50 \mathrm{~m} / \mathrm{s}$
E) $15.0 \mathrm{~m} / \mathrm{s}$

Ans:

$\Delta x=\left(\frac{v+v_{0}}{2}\right) t$
$30=\frac{v+20}{2} \times 2 \Rightarrow v=30-20=10 \mathrm{~m} / \mathrm{s}$

Q7.

The vector \vec{V}_{1} in Figure 2 is equal to:
Fig\# 2
A) $\vec{V}_{2}-\vec{V}_{3}$
B) $\vec{V}_{3}-\vec{V}_{2}$
C) $\vec{V}_{2}+\vec{V}_{3}$
D) $\vec{V}_{3} \cos \theta$
E) $\vec{V}_{3} \times \vec{V}_{2}$

Ans:

$$
\begin{aligned}
& \vec{v}_{1}+\vec{v}_{3}=\vec{v}_{2} \\
& \vec{v}_{1}=\vec{v}_{2}-\vec{v}_{3}
\end{aligned}
$$

Q8.
The x component of vector $\overrightarrow{\mathrm{A}}$ is -3.00 m and the y component is +4.00 m . Find the magnitude of $\overrightarrow{\mathrm{A}}$ and the angle that it makes with the positive x -axis.
A) $5.00 \mathrm{~m} ; 127^{\circ}$
B) 5.00 m ; 53.1°
C) $7.00 \mathrm{~m} ; 127^{\circ}$
D) 7.00 m ; 53.1°
E) $1.00 \mathrm{~m} ; 127^{\circ}$

Ans:

$$
\begin{aligned}
& \overrightarrow{\mathrm{A}}=(-3.00 \hat{\imath}+4.00 \hat{\jmath}) \mathrm{m} \\
& |\overrightarrow{\mathrm{~A}}|=\sqrt{9+16}=5.00 \mathrm{~m} \\
& \theta_{x}=\cos ^{-1} \frac{A_{x}}{\mathrm{~A}}=\cos ^{-1} \frac{-3}{5} \\
& \theta_{x}=126.9^{\circ} \approx 127^{\circ}
\end{aligned}
$$

Q9.
What is the angle between the two vectors $\vec{A}=-2.0 \hat{i}-2.0 \hat{j}-2.0 \hat{k}$ and $\vec{B}=3.0 \hat{i}+3.0 \hat{j}+3.0 \hat{k}$?
A) 180°
B) 0°
C) 270°
D) 360°
E) 90°

Ans:
$\cos \theta=\frac{\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}}{A B}=\frac{-6-6-6}{\sqrt{12} \sqrt{27}}=\frac{-18}{18}=-1$
$\Rightarrow \theta=180^{\circ}$

Q10.

Find $\vec{A} .(\vec{B} \times \vec{A})$ if $\vec{A}=3.0 \hat{i}+3.0 \hat{j}+3.0 \hat{k}$ and $\vec{B}=4.0 \hat{i}+4.0 \hat{j}+4.0 \hat{k}$
A) 0
B) 12
C) 6.0
D) 18
E) 24

Ans:

Vector $\vec{B} \times \vec{A}$ is perpendicular to both \vec{A} and \vec{B}
So, $\quad \vec{A} \cdot(\vec{B} \times \vec{A})=0$

Q11.

A plane is initially travelling in a direction 50.0° east of north at $2.00 \times 10^{2} \mathrm{~m} / \mathrm{s}$. It then travels in a direction 50.0° west of north at $2.00 \times 10^{2} \mathrm{~m} / \mathrm{s}$. The CHANGE in its velocity is:
A) $306 \mathrm{~m} / \mathrm{s}$ West
B) $306 \mathrm{~m} / \mathrm{s}$ East
C) $200 \mathrm{~m} / \mathrm{s}$ East
D) $200 \mathrm{~m} / \mathrm{s}$ West
E) $0 \mathrm{~m} / \mathrm{s}$

Ans:
$\overrightarrow{\mathrm{v}}_{i}=200 \cos 40^{\circ} \hat{\imath}+200 \sin 40^{\circ} \hat{\jmath}$
$\overrightarrow{\mathrm{v}}_{f}=-200 \cos 40^{\circ} \hat{\imath}+200 \sin 40^{\circ} \hat{\jmath}$
$\overrightarrow{\mathrm{v}}_{f}-\overrightarrow{\mathrm{v}}_{i}=-400 \cos 40^{\circ} \hat{\imath}=(-306 \mathrm{~m} / \mathrm{s}) \hat{\imath}$

Q12.

A golf ball is struck at ground level. The speed of the golf ball as a function of time is shown in Figure 3, where $t=0$ at the instant the ball is struck. How far does the ball travel horizontally before returning to ground level?

Fig\# 3
A) 95 m
B) 15 m
C) 42 m
D) 77 m
E) 50 m

Ans:

From the Fig: $\mathrm{v}_{\mathrm{x}}=19.0 \mathrm{~m} / \mathrm{s}$

$$
\begin{gathered}
\mathrm{t}=5.0 \mathrm{~s} \\
\Delta \mathrm{x}=\mathrm{v}_{\mathrm{x}} \mathrm{t}=95.0 \mathrm{~m}
\end{gathered}
$$

Q13.
An Earth satellite moves in a circular orbit of $6.64 \times 10^{6} \mathrm{~m}$ radius and with a period of 60.0 minutes. What is the centripetal acceleration of the satellite?
A) $20.2 \mathrm{~m} / \mathrm{s}^{2}$
B) $52.8 \mathrm{~m} / \mathrm{s}^{2}$
C) $43.7 \mathrm{~m} / \mathrm{s}^{2}$
D) $18.4 \mathrm{~m} / \mathrm{s}^{2}$
E) $95.3 \mathrm{~m} / \mathrm{s}^{2}$

Ans:

$$
\begin{aligned}
& a=\frac{v^{2}}{r}=\frac{\left(\frac{2 \pi r}{T}\right)^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}} \\
& \therefore a=4\left(\frac{22}{7}\right)^{2} \times \frac{6.64 \times 10^{6}}{(60 \times 60)^{2}}=20.2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Q14.

A man runs with a constant speed along a moving sidewalk from one end to the other, taking 2.50 s . He then runs back with the same constant speed along the sidewalk to his starting point, taking 10.0 s . What is the ratio of the man's running speed to the sidewalk's speed?
A) 1.67
B) 0.600
C) 4.00
D) 0.250
E) 2.50

Ans:

Let d is the total lenght of the moving side walk. Then

$$
\begin{aligned}
& 2.50=\frac{d}{v+v_{s}} \\
& 10.0=\frac{d}{v-v_{s}} \\
& \frac{10.0}{2.50}=\frac{v+v_{s}}{v-v_{s}} \Rightarrow 4\left(v-v_{s}\right)=v+v_{s} \\
& 3 v=5 v_{s} \Rightarrow \frac{v}{v_{s}}=\frac{5}{3}
\end{aligned}
$$

Q15.
A particle moves at constant velocity $\vec{v}=(3.0 \mathrm{~m} / \mathrm{s}) \hat{i}-(4.0 \mathrm{~m} / \mathrm{s}) \hat{j}$ under the effect of three forces. If two of the forces are $\vec{F}_{1}=(2.0 N) \hat{i}+(-6.0 N) \hat{j}$ and $\vec{F}_{2}=(3.0 N) \hat{i}+(-4.0 N) \hat{j}$. Find the third force \vec{F}_{3}.
A) $\vec{F}_{3}=(-5.0 N) \hat{i}+(10 N) \hat{j}$
B) $\vec{F}_{3}=(5.0 N) \hat{i}+(-10 N) \hat{j}$
C) $\vec{F}_{3}=(2.0 \mathrm{~N}) \hat{i}+(5.0 \mathrm{~N}) \hat{j}$
D) $\vec{F}_{3}=(-3.0 \mathrm{~N}) \hat{i}+(-6.0 \mathrm{~N}) \hat{j}$
E) $\vec{F}_{3}=(-6.0 \mathrm{~N}) \hat{i}+(-8.0 \mathrm{~N}) \hat{j}$

Ans:

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2}+\overrightarrow{\mathrm{F}}_{3}=\mathrm{ma}=0 \\
& \overrightarrow{\mathrm{~F}}_{3}=-\left(\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2}\right) \\
& =-\left(\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2}\right) \\
& =-(5.0 \hat{\imath}-10 \hat{\jmath}) \mathrm{N} \\
& =(-5.0 \hat{\imath}+10 \hat{\jmath}) \mathrm{N}
\end{aligned}
$$

Q16.
An elevator cabin that weighs 30.0 kN moves upward. What is the tension in the cable if the cabin's speed is increasing at a rate of $1.00 \mathrm{~m} / \mathrm{s}^{2}$?
A) 33.1 kN
B) 35.0 kN
C) 30.0 kN
D) 31.0 kN
E) 26.9 kN

Ans:

$$
\begin{aligned}
\mathrm{m} & =\frac{30 \times 10^{3}}{9.8}=3.06 \times 10^{3} \mathrm{~kg} \\
\mathrm{~T} & -\mathrm{mg}=\mathrm{ma} \\
\mathrm{~T} & =\mathrm{mg}+\mathrm{ma} \\
& =30 \mathrm{kN}+3.06 \mathrm{kN}=33.1 \mathrm{kN}
\end{aligned}
$$

Q17.
Figure 4 gives, as a function of time, the force component F_{x}, that acts on a 3.0 kg ice block that can move along the x axis. At $\mathrm{t}=0$, the block is moving in the positive direction of the axis, with a speed of $+3.0 \mathrm{~m} / \mathrm{s}$. What is its velocity at $\mathrm{t}=8.0 \mathrm{~s}$?

Fig. 4
A) $+9.7 \mathrm{~m} / \mathrm{s}$
B) $+6.7 \mathrm{~m} / \mathrm{s}$
C) $+13 \mathrm{~m} / \mathrm{s}$
D) $-9.7 \mathrm{~m} / \mathrm{s}$
E) $+23 \mathrm{~m} / \mathrm{s}$

I

Ans:

$$
\begin{aligned}
\Delta \mathrm{V} & =\frac{1}{\mathrm{~m}}\left[\operatorname{area} A_{1}+\operatorname{area} \mathrm{A}_{2}\right] \\
& =\frac{1}{3}\left[\frac{1}{2} \times 10 \times 6+\frac{1}{2} \times(-10) \times 2\right]=\frac{20}{3}=6.67 \mathrm{~m} / \mathrm{s} \\
\Delta \mathrm{~V} & =6.67 \mathrm{~m} / \mathrm{s} \\
\mathrm{~V}_{\mathrm{f}} & =\left(\mathrm{v}_{\mathrm{i}}+6.67\right) \mathrm{m} / \mathrm{s}=9.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q18.

Figure 5 shows box $1\left(m_{1}=4.0 \mathrm{~kg}\right)$ on a frictionless plane inclined at angle $\theta_{1}=30^{\circ}$. The box is connected via a cord of negligible mass to box 2 ($m_{2}=3.0 \mathrm{~kg}$) on a frictionless plane inclined at angle $\theta_{2}=60^{\circ}$. The pulley is frictionless and has negligible mass. What is the acceleration of Box 1?

Fig\# 5
A) $0.84 \mathrm{~m} / \mathrm{s}^{2}$ up along the incline
B) $0.84 \mathrm{~m} / \mathrm{s}^{2}$ down along the incline
C) $4.6 \mathrm{~m} / \mathrm{s}^{2}$ up along the incline
D) $4.6 \mathrm{~m} / \mathrm{s}^{2}$ down along the incline
E) $0 \mathrm{~m} / \mathrm{s}^{2}$

Ans:

$$
\begin{aligned}
& \mathrm{T}-\mathrm{m}_{1} \mathrm{~g} \sin 30^{\circ}=\mathrm{m}_{1} \mathrm{a} \\
& \mathrm{~m}_{2} \mathrm{~g} \sin 60^{\circ}-\mathrm{T}=\mathrm{m}_{2} \mathrm{a} \\
& \therefore \mathrm{a}=\frac{\mathrm{m}_{2} \mathrm{~g} \sin 60^{\circ}-\mathrm{m}_{1} \mathrm{~g} \sin 30^{\circ}}{\mathrm{m}_{1}+\mathrm{m}_{2}} \\
& =\frac{25.46-19.6}{7} \mathrm{~m} / \mathrm{s}^{2} \\
& =0.837 \mathrm{~m} / \mathrm{s}^{2} \\
& =0.84 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Q19.

A person pushes horizontally with a force of 300 N on a 60.0 kg crate to move it across a level floor. The coefficient of kinetic friction is 0.250 . What is the crate's acceleration?
A) $2.55 \mathrm{~m} / \mathrm{s}^{2}$
B) $15.3 \mathrm{~m} / \mathrm{s}^{2}$
C) $4.96 \mathrm{~m} / \mathrm{s}^{2}$
D) $0 \quad \mathrm{~m} / \mathrm{s}^{2}$
E) $1.35 \mathrm{~m} / \mathrm{s}^{2}$

Ans:

$\mathrm{F}-\mathrm{f}_{\mathrm{k}}=\mathrm{ma}$
$300-0.25 \times 60 \times 9.8=60 \mathrm{a}$
$\mathrm{a}=2.55 \mathrm{~m} / \mathrm{s}^{2}$

Q20.

In Figure 6, a man drives a car over the top of a hill, the cross section of which can be approximated by a circle of radius $R=250 \mathrm{~m}$. What is the greatest speed at which he can drive without the car leaving the road at the top of the hill?

Fig\# 6

A) $49.5 \mathrm{~m} / \mathrm{s}$
B) $250 \mathrm{~m} / \mathrm{s}$
C) $9.80 \mathrm{~m} / \mathrm{s}$
D) $155 \mathrm{~m} / \mathrm{s}$
E) $25.0 \mathrm{~m} / \mathrm{s}$

Ans:

$$
\begin{aligned}
& -\widehat{\mathrm{A}}+\mathrm{mg}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \\
& \mathrm{mg}=\frac{\text { phv}}{}{ }^{2} \\
& \mathrm{v}=\sqrt{\mathrm{gr}}=49.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

