Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 1

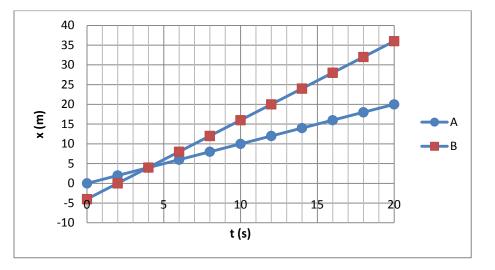
Q1.

A truck moves with a constant speed of 10 m/s in a straight road. It passes point A at time t = 0 and continues towards point B. Ten minutes after the truck passes the point A, a car moving with a constant speed of 15 m/s passes the same point A and continues towards B along the same straight road. The car will catch up with the truck at time *t* equals to

- A) 30 minutes
- B) 60 minutes
- C) 3 minutes
- D) 10 minutes
- E) 15 minutes

Solution:

Let's say the car and the truck are at the same position at time *t*:


 $d_{truck} = v_{truck}t = 10 t$ $d_{car} = v_{car}(t - 600) = 15 t - 9000$ $\therefore 10 t = 15 t - 9000 \implies t = 1800 s = 30 min$

Stat# NO STATISTICS

Phys101 Final-102		Zero Version
	Wednesday, June 08, 2011	Page: 2

Q2.

Figure 1 shows the position-time graph for two objects, A and B, moving along a straight line. Which one of the following statements is TRUE?

- A) The speed of B is always greater than the speed of A.
- B) The two objects have the same speed at t = 4 s.
- C) Object B is always ahead of object A.
- D) Object A is always ahead of object B.
- E) The speed of A is always greater than the speed of B.

Ans:

A.

Stat# A_48_DIS_0.36_PBS_0.27_B_43_C_3_D_2_E_4_EXP_60_NUM_562

Q3.

Consider two vectors $\vec{v} = 3.0 \,\hat{i} + 3.0 \,\hat{j}$ and $\vec{w} = \cos\theta \,\hat{i} + \sin\theta \,\hat{j}$, where θ is measured counter clockwise with respect to the positive *x*-axis. For what value of θ (in degrees) is $\vec{v} \times \vec{w} = 0$?

- A) 45
- B) 135
- C) 90
- D) 105
- E) 0

Solution:

 $(3.0\,\hat{i} + 3.0\,\hat{j}) \times (\cos\theta\,\hat{i} + \sin\theta\,\hat{j}) = 0$ $\not\beta\cos\theta\,(-\hat{k}) + \not\beta\sin\theta\,(\hat{k}) = 0$ $\sin\theta = \cos\theta\,;\,\tan\theta = 1 \implies \theta = 45^{\circ}$

Stat# A_46_DIS_0.43_PBS_0.34_B_27_C_7_D_3_E_17_EXP_50_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 3

Q4.

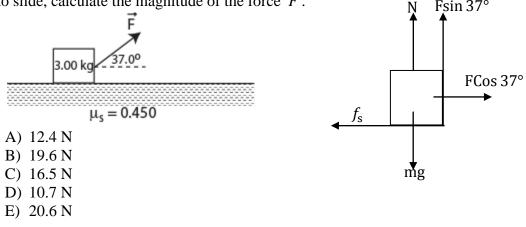
A 2-kg object is initially at rest. At time t = 0, a force $\vec{F}_1 = (2\hat{i} + 2\hat{j})N$, is applied to the object. At time t = 1 s, an additional force $\vec{F}_2 = (-2\hat{i} - 2\hat{j})N$ is applied to the object. Find the velocity of the object at t = 2 s.

A)
$$(\hat{i} + \hat{j})m/s$$

B) $(-\hat{i} - \hat{j})m/s$
C) $(2\hat{i} + 2\hat{j})m/s$
D) $(-2\hat{i} - 2\hat{j})m/s$
E) 0

Solution:

$$\vec{v}_{0} = 0$$


$$\vec{a}_{1} = \frac{\vec{F}_{1}}{m} = \frac{(2\hat{i}+2\hat{j})}{2} = (\hat{i}+\hat{j})\frac{m}{s^{2}}; \quad \vec{v}(t=1\ s) = \vec{v}_{0} + \vec{a}\ t = 0 + \vec{a}\ *\ 1 = (i+\hat{j})\frac{m}{s}$$

at t=1 s, $\vec{F}_{net} = \vec{F}_{1} + \vec{F}_{2} = 0$, \rightarrow No acceleration, no change in velocity after 1 s.
Therefore $\vec{v}(t=2\ s) = \vec{v}(t=1\ s) = (i+\hat{j})\ m/s$

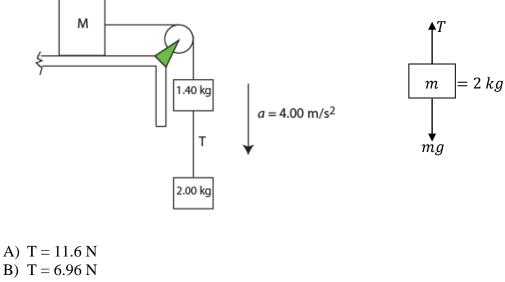
Stat# A_15_DIS_0.21_PBS_0.29_B_7_C_9_D_9_E_60_EXP_60_NUM_562

Phys101 Final-102		Zero Version
	Wednesday, June 08, 2011	Page: 4

Q5.

A force \vec{F} is applied to a block of mass equal to 3.00 kg resting on a rough horizontal surface. The force makes an angle of 37.0° with the horizontal as shown in **Figure 2**. The coefficient of static friction between the block and the surface is 0.450. If the block is just about to slide, calculate the magnitude of the force \vec{F} . N Fsin 37°

Solution:


F cos 37° =
$$f_s = \mu_s (mg - F \sin 37°)$$

F(cos 37° + $\mu_s \sin 37°) = \mu_s mg$
F = $\frac{\mu_s mg}{\cos 37° + \mu_s \sin 37°} = \frac{13.23}{0.7986 + 0.2708} = 12.37 N = 12.4 N$

Stat# A_25_DIS_0.30_PBS_0.30_B_9_C_45_D_13_E_9_EXP_45_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 5

Q6.

The system shown in **Figure 3** is released from rest and is moving with an acceleration of 4.00 m/s^2 . Find the magnitude of the tension T shown in the figure. (Assume that the pulley and the cords are massless).

B) T = 6.96 N
C) T = 15.4 N
D) T = 10.0 N
E) T = 4.80 N

Solution:

$$mg - T = ma \implies T = m (g - a) = 2.0 (9.8 - 4.0) = 11.6 \text{ N}$$

Stat# A_52_DIS_0.49_PBS_0.35_B_13_C_15_D_9_E_11_EXP_53_NUM_562

Q7.

If the weight of an object on the Moon is one-sixth of its weight on Earth, the ratio of its kinetic energy when it is moving with speed V on Earth to its kinetic energy when it is moving with the same speed V on the Moon is:

A) 1.0
B) 6.0
C) 2.6
D) 3.1
E) 1.6

Ans.

A. (mass does not change !!)

Stat# A_37_DIS_0.40_PBS_0.32_B_44_C_5_D_5_E_9_EXP_60_NUM_562

King Fahd University of Petroleum and Minerals	
Physics Department	

c-20-n-30-s-0-e-1-fg-1-fo-1

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 6

Q8.

A block is released from rest at the top of an inclined plane making an angle of 30.0° with the horizontal. The coefficient of kinetic friction between the block and the inclined plane is 0.300. What is the speed of the block after it has traveled a distance of 1.00 m downwards along the inclined plane?

A) 2.17 m/s	1.0 m
B) 3.58 m/s	
C) 4.30 m/s	
D) 5.57 m/s	30°
E) 7.33 m/s	

Solution:

$$\Delta k + \Delta u_g = W_{nc}; \ \Delta k = \left(\frac{1}{2}mv^2 - 0\right); \ \Delta u_g = -mgd\sin 37^\circ$$
$$W_{nc} = -\mu_k mg\cos 37^\circ * d$$
$$\therefore \frac{1}{2}mv^2 = mgd\sin 37^\circ - \mu_k mg\cos 37^\circ * d$$
$$v^2 = 2g\sin 30^\circ - 2\mu_k g\cos 30^\circ$$
$$= 2\ (9.8)\frac{1}{2} - 2 * 0.30 * 9.8 * 0.866 = 9.8 - 5.092 = 4.708$$
$$\Rightarrow v = 2.169 \approx 2.17 \ m/s$$

Stat# A_40_DIS_0.33_PBS_0.30_B_26_C_14_D_12_E_8_EXP_45_NUM_562

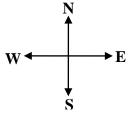
Phys101 Final-102		Zero Version
	Wednesday, June 08, 2011	Page: 7

Q9.

A 1.00×10^3 kg car is traveling at 20.0 m/s toward the north. During a collision, the car receives an impulse of magnitude 1.00×10^4 N·s toward the south. What is the velocity of the car immediately after the collision?

A)	10.0	m/s,	north
----	------	------	-------

- B) 30.0 m/s, north
- C) 20.0 m/s, north
- D) 10.0 m/s, south
- E) 20.0 m/s, south


Solution:

$$\vec{p}_{i} = 20 * 10^{3} (\hat{j})$$

$$\Delta \vec{p} = 10 * 10^{3} (-\hat{j})$$

$$\Delta \vec{p} = \vec{p}_{f} - \vec{p}_{i} \implies \vec{p}_{f} = \Delta \vec{p} + \vec{p}_{i}$$

$$\vec{p}_{f} = 10 * 10^{3} \hat{j} \implies \vec{v}_{f} = \frac{10 * 10^{3} \hat{j}}{1.0 * 10^{3}} = 10\hat{j}$$

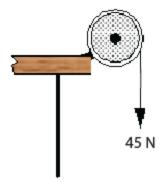
Stat# A_42_DIS_0.32_PBS_0.28_B_19_C_6_D_24_E_10_EXP_50_NUM_562

Phys101 Final-102		Zero Version
	Wednesday, June 08, 2011	Page: 8

Q10.

Two blocks approach each other at right angles on a frictionless surface. Block A has a mass of 45.1 kg and travels in the +x direction at 3.20 m/s. Block B has a mass of 85.8 kg and is moving in the +y direction at 2.08 m/s. They collide and stick together. Find the final velocity of the two blocks.

- A) $(1.10 \hat{i} + 1.36 \hat{j}) \text{ m/s}$
- B) $(2.30 \hat{i} + 3.36 \hat{j})$ m/s
- C) $(3.45 \hat{i} + 2.56 \hat{j})$ m/s
- D) $(5.20 \hat{i} + 6.37 \hat{j})$ m/s
- E) $(4.50 \hat{i} + 4.76 \hat{j}) \text{ m/s}$


Solution:

Stat# A_63_DIS_0.61_PBS_0.44_B_12_C_11_D_8_E_6_EXP_40_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 9

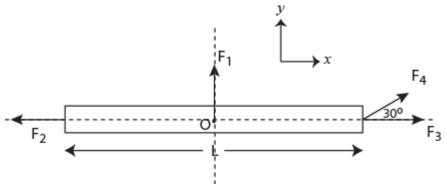
Q11.

As shown in **Figure 4**, a 45-N force is applied to one end of a massless string which is wrapped around a pulley that has a radius of 1.5 m and a moment of inertia of 2.25 kg.m². Through what angle will the pulley rotate in 3.0 s if it was initially at rest?

A) 135 radB) 90.0 radC) 451 rad

- D) 270 rad
- E) 225 rad

Solution:


$$\tau = I\alpha \implies \alpha = \frac{\tau}{I} = \frac{F * R}{I}$$
$$\therefore \alpha = \frac{45 * 1.5}{2.25} = 30.0 \frac{rad}{s^2}$$
$$\Delta \theta = \omega_0 t + \frac{1}{2} \alpha t^2 = \frac{1}{2} (30) * 9 = 135 \text{ rad}$$

Stat# A_32_DIS_0.34_PBS_0.33_B_16_C_10_D_17_E_23_EXP_50_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 10

Q12.

Figure 5 shows a uniform horizontal beam of mass M = 4.00 kg and length L = 4.00 m being acted upon by four forces of magnitudes $F_1 = 10.0$ N, $F_2 = 20.0$ N, $F_3 = 30.0$ N and $F_4 = 10.0$ N and in the directions as indicated. Find the net torque about point O at the center of the beam.

- A) 10.0 N.m, counter clockwise
- B) 10.0 N.m, clockwise
- C) 100 N.m, counter clockwise
- D) 100 N.m, clockwise
- E) 140 N.m, counter clockwise

Solution:

$$\vec{\tau}_{net} = \vec{\tau}_{F_1} + \vec{\tau}_{F_2} + \vec{\tau}_{F_3} + \vec{\tau}_{F_4}$$

$$\vec{\tau}_{net} = (F_4 \sin 30^\circ * 2.0) \text{ CCW} = (10 * \frac{1}{4} * \cancel{2}) \text{ CCW} = (10 \text{ N. m}) \text{ CCW}$$

Stat# A_59_DIS_0.52_PBS_0.41_B_13_C_14_D_7_E_7_EXP_50_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 11

Q13.

As shown in **Figure 6**, a uniform beam of length 4.20 m is suspended by a cable from its center point O. A 65.0-kg man stands at one end of the beam. Where should a 190-kg block be placed on the beam so that the beam is in static equilibrium (Distances are measured from the center point O of the beam)?

A)	0.718	m
B)	1.44	m
C)	2.35	m
D)	0.543	m
E)	2.10	m

Solution:

65 * 2.1 = 190 * x $x = \frac{65 * 2.1}{190} = 0.718 m$

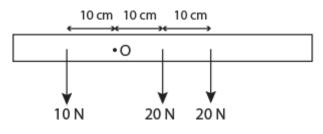
Stat# A_70_DIS_0.45_PBS_0.38_B_14_C_5_D_5_E_6_EXP_60_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 12

Q14.

What increase in pressure is necessary to decrease the volume of a sphere by 0.150 % (Take the bulk modulus of the sphere $B = 2.80 \times 10^{10} \text{ N/m}^2$)?

A) $4.20 \times 10^7 \text{ N/m}^2$ B) $1.40 \times 10^7 \text{ N/m}^2$ C) $3.56 \times 10^6 \text{ N/m}^2$ D) $2.80 \times 10^7 \text{ N/m}^2$ E) $1.01 \times 10^5 \text{ N/m}^2$


Solution:

$$\Delta p = -B \frac{\Delta V}{V} = B * \frac{0.15}{100} = \frac{2.80 * 10 * 0.15}{100} = 4.20 \times 10^7 N/m^2$$

Stat# A_71_DIS_0.46_PBS_0.36_B_7_C_6_D_9_E_6_EXP_57_NUM_562

Q15.

Three parallel forces of magnitudes 10.0 N, 20.0 N, and 20.0 N, respectively, act on a body (**Figure 7**). The perpendicular distances from a given point O to their lines of action are shown. The single force which can replace these forces is:

- A) 50.0 N, 10.0 cm to the right of point O.
- B) 50.0 N, 20.0 cm to the right of point O.
- C) 30.0 N, 17.5 cm to the right of point O.
- D) 50.0 N, 17.5 cm to the right of point O.
- E) 50.0 N, acting through the given point O.

Solution:

$$\vec{F}_{net} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 50 \text{ N};$$

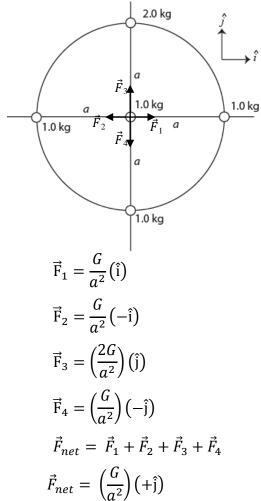
 $\vec{\tau}_{net} = 10(0.1) - 20(0.1) - 20(0.2) = 5 N \cdot m \ clockwise$

 $\tau_{net}(from the replacing force) = F_{net} x = 5$

50 x = 5

 \Rightarrow x = $\frac{5}{50}$ = 0.10 m = 10 cm, and to the right to make the torque clockwise.

Stat# A_50_DIS_0.54_PBS_0.40_B_7_C_16_D_18_E_9_EXP_45_NUM_562


Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 13

Q16.

Five masses are put together as shown in **Figure 8**. What is the net force on the 1.0-kg mass placed in the center of the circle? G is the gravitational constant.

A)
$$G/a^{2}(+\hat{j})$$

B) $G/a^{2}(-\hat{j})$
C) 0
D) $3G/a^{2}(\hat{i}+\hat{j})$
E) $4G/a^{2}(-\hat{j})$

Solution:

Stat# A_75_DIS_0.36_PBS_0.31_B_9_C_7_D_5_E_5_EXP_55_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 14

Q17.

If, instead of being distributed over the volume of the Earth, the mass of the Earth is distributed inside a thin shell, what would be the radial dependence of the gravitational force on an object outside the Earth? Take *r* to be the distance to the object from the center of the Earth.

A) $1/r^{2}$ B) 1/rC) $1/r^{3}$ D) $1/\sqrt{r}$ E) None of the others

Ans.

A.

Stat# A_31_DIS_0.20_PBS_0.19_B_13_C_14_D_18_E_24_EXP_63_NUM_562

Q18.

If we assume that a black hole is a planet where the escape velocity is equal to the speed of light $(3.00 \times 10^8 \text{ m/s})$, find the radius of a black hole with a mass equal to that of Earth.

A) 8.86×10^{-3} m B) $8.85 \times 10^{+3}$ m C) $6.38 \times 10^{+3}$ m D) 6.38×10^{-3} m E) $3.00 \times 10^{+8}$ m

Solution:

$$v_{esc} = \sqrt{\frac{2GM}{R}}$$

$$v_{esc}^2 = \frac{2GM}{R} \implies R = \frac{2GM}{v_{esc}^2}$$

$$R = \frac{2*6.67*10^{-11}*5.97^6*10^{24}}{9*10^{16}} = 8.86*10^{-3} \text{m}$$

Stat# A_86_DIS_0.33_PBS_0.33_B_3_C_6_D_3_E_2_EXP_60_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 15

Q19.

The law of areas due to Kepler is equivalent to the law of

- A) Conservation of angular momentum.
- B) Conservation of mass.
- C) Conservation of energy.
- D) Conservation of linear momentum.
- E) None of the others.

Ans.

A.

Stat# A_38_DIS_0.38_PBS_0.29_B_10_C_22_D_14_E_15_EXP_60_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 16

Q20.

What speed on the surface of Earth should be given to a satellite to put it in an orbit of radius $R = 3R_E$ around the Earth (where R_E is the radius of Earth)?

A)
$$\sqrt{\frac{10 G M_E}{6 R_E}}$$

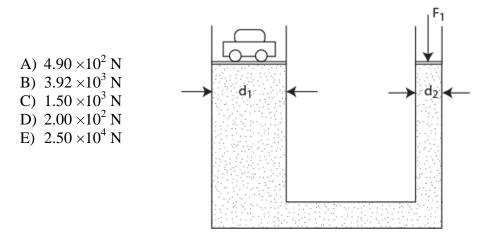
B) $\sqrt{\frac{5 G M_E}{6 R_E}}$
C) $\sqrt{\frac{8 G M_E}{6 R_E}}$
D) $\sqrt{\frac{G M_E}{R_E}}$
E) $\sqrt{\frac{7 G M_E}{6 R_E}}$

Solution:

$$\frac{1}{2} \eta v^2 - \frac{G \eta M}{R_E} = -\frac{G \eta M}{2 (3R_E)}$$

$$v^2 = \frac{2GM}{R_E} - \frac{GM}{6R_E}$$

$$v^2 = \frac{12GM - 2GM}{6R_E} = \frac{10GM}{6R_E}$$


$$v = \sqrt{\frac{10GM}{6R_E}}$$

Stat# A_15_DIS_0.09_PBS_0.09_B_20_C_31_D_20_E_13_EXP_52_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 17

Q21.

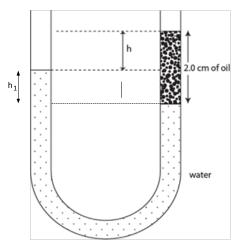
In the hydraulic lift of **Figure 9**, a large piston of diameter $d_1 = 120$ cm supports a car of mass 3.20×10^3 kg. What is the magnitude of the vertically downward force F_1 that must be applied to the smaller piston of diameter $d_2 = 15.0$ cm to balance the car?

Solution:

$$\frac{F_1}{A_1} = \frac{F_2}{A_2} \implies F_1 = \frac{F_2}{A_2} * A_1$$

$$F_1 = F_2 \left(\frac{A_1}{A_2}\right) = 3.20 * 10^3 * 9.8 \left(\frac{15}{120}\right)^2$$

$$F_1 = 0.49 * 10^3 = 4.9 \times 10^3 N$$


Stat# A_49_DIS_0.58_PBS_0.46_B_24_C_4_D_7_E_16_EXP_55_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 18

Q22.

A U-shaped tube open at both ends contains water and a quantity of oil occupying a 2.0 cm length of the tube, as shown in **Figure 10**. If the density of oil is 82% of the density of water, what is the height difference h?

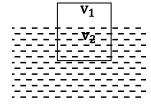
A) 0.36 cm
B) 1.2 cm
C) 0.43 cm
D) 0.75 cm
E) 0.82 cm

Solution:

$$\rho_{oil} * 2.0 * g = \rho_w (h_1) g$$

 $h_1 = \frac{2\rho_{oil}}{\rho_w} = 2 * 0.82 = 1.64 \text{ cm}$

$$h = 2 - 1.64 = 0.36 \text{ cm}$$


Stat# A_47_DIS_0.47_PBS_0.39_B_23_C_10_D_7_E_12_EXP_47_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 19

Q23.

The average density of a typical iceberg is 0.86 that of sea water. What fraction of the volume of the iceberg is outside the water?

- A) 0.14B) 0.86C) 0.50D) 0.45
- E) 0.75

Solution:

 $B = m_{ice}g$ $\rho_w V_2 \not g = \rho_{ice} V_{ice} \not g$ $\frac{V_2}{V_{ice}} = \frac{\rho_{ice}}{\rho_w} = 0.86; \quad \frac{V_1}{V_{ice}} = 0.14$

Stat# A_38_DIS_0.48_PBS_0.39_B_38_C_5_D_9_E_9_EXP_50_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 20

Q24.

Water flows through a horizontal pipe of varying cross-section. The pressure is 1.5×10^4 Pa at a point where the speed is 2.0 m/s and the area of cross section is A. Find the speed and pressure at a point where the area is A/2.

- A) 4.0 m/s and 0.90 $\times 10^4$ Pa
- B) 4.0 m/s and 0.75×10^4 Pa
- C) 8.0 m/s and 0.90 $\times 10^4$ Pa
- D) 8.0 m/s and 1.5×10^4 Pa
- E) 2.0 m/s and 1.8×10^4 Pa

Solution:

$$P_{1} + \frac{1}{2}\rho v_{1}^{2} = P_{2} + \frac{1}{2}\rho v_{2}^{2}$$
i) $v_{2} = \frac{A_{1}}{A_{2}} v_{1} = \frac{A_{1}}{A_{1/2}} * v_{1} = 2v_{1} = 4.0 \text{ m/s}$
ii) $P_{2} = P_{1} + \frac{1}{2}\rho v_{1}^{2} - \frac{1}{2}\rho v_{2}^{2}$

$$= 1.5 * 10^{4} + \frac{1}{2} 10^{3} (4 - 16)^{2} = 1.5 * 10^{4} - 6 * 10^{3}$$

$$= (1.5 - 0.6)10^{4} = 0.90 \times 10^{4} P_{a}$$

Stat# A_39_DIS_0.47_PBS_0.39_B_40_C_7_D_6_E_6_EXP_43_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 21

Q25.

A large tank is filled with water. A tightly fitting piston rests on top of the water (**Figure 11**). The combined pressure from the piston and atmosphere on the top surface of water is 1.02×10^5 Pa. A very small circular hole is opened at a depth of 60.0 cm below the initial water level of the tank. What is the initial speed of water coming out of the hole?

A) 3.71 m/s
B) 5.43 m/s
C) 9.80 m/s
D) 4.93 m/s
E) 1.60 m/s

 P_1 , V_1

 $\label{eq:p2.v2} \begin{array}{c} v_1 \!\approx\! 0 \\ v_2 \!>\! v_1 \\ P_1 = 1.02 \,\ast \, 10^5 \\ P_2 = 1.01 \,\ast \, 10^5 \end{array}$

Solution:

$$P_{1} + \frac{1}{2}\rho v_{1}^{2} + egh = P_{2} + \frac{1}{2}\rho v_{2}^{2}$$

$$\frac{1}{2}\rho v_{2}^{2} = P_{1} - P_{2} + egh$$

$$\frac{1}{2} 10^{3} v_{2}^{2} = (1.02 - 1.01) * 10^{5} + 10^{3} * 9.8 * 0.60$$

$$= 0.01 * 10^{5} + 5.88 * 10^{3} = 0.0688 * 10^{5}$$

$$v_{2}^{2} = \frac{2 * 0.0688 * 10^{5}}{10^{3}} = 13.76$$

$$v = 3.71 \text{ m/s}$$

Stat# A_43_DIS_0.38_PBS_0.34_B_13_C_16_D_17_E_11_EXP_37_NUM_562

King Fahd University of Petroleum and Minerals	
Physics Department	

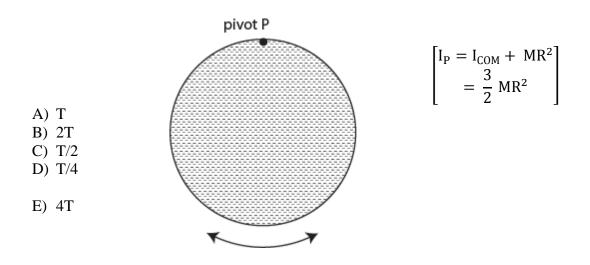
Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 22

Q26.

If the amplitude of oscillation of an object in simple harmonic motion is increased, then

- A) the total mechanical energy of the object will increase
- B) the period of oscillations of the object will increase
- C) the frequency of oscillations of the object will increase
- D) the frequency of oscillations of the object will decrease
- E) the maximum kinetic energy of the object will decrease

Ans.


А.

Stat# A_47_DIS_0.50_PBS_0.40_B_11_C_18_D_16_E_9_EXP_50_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 23

Q27.

A solid circular disk is oscillating with a period T in a vertical plane about pivot point P as shown in **Figure 12**. If the disk is made four times heavier but still having the same radius, what will be its period of oscillation?

Solution:

$$T = 2\pi \sqrt{\frac{I}{Mgd}}$$
$$= 2\pi \sqrt{\frac{\frac{3}{2}MR^2}{MgR}}$$
$$T = 2\pi \sqrt{\frac{3R}{2g}}$$

 $T \propto \sqrt{R}$ and it does not depend on M. T is same

Stat# A_37_DIS_0.30_PBS_0.28_B_23_C_18_D_14_E_8_EXP_40_NUM_562

King Fahd University of Petroleum and Minerals	
Physics Department	

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 24

Q28.

The maximum speed of a 3.00-kg object executing simple harmonic motion is 6.00 m/s. The maximum acceleration of the object is 5.00 m/s^2 . What is its period of oscillations?

A) 7.54 s
B) 2.50 s
C) 1.20 s
D) 0.833 s
E) 0.278 s

Solution:

$$v_{max} = 6 = y_{m}\omega$$
$$a_{max} = 5 = y_{m}\omega^{2}$$
$$\frac{a_{max}}{v_{max}} = \frac{5}{6} = \omega$$
$$T = \frac{2\pi}{5/6} = 7.54 s$$

Stat# A_35_DIS_0.51_PBS_0.46_B_14_C_26_D_16_E_9_EXP_45_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 25

Q29.

An object executes simple harmonic motion with an amplitude of 1.2 cm and a time period of 0.10 s. What is the total distance traveled by the object in 1.9 s?

- A) 91 cm
- B) 27 cm
- C) 40 cm
- D) 11 cm
- E) 70 cm

Solution:

In a time period it covers a distance = $4 \times$ amplitude.

 $\therefore d = \frac{4 * Amp * t}{T} = \frac{4 * 1.2 * 1.9}{0.10} = 91.2 \, cm$

Stat# A_21_DIS_0.19_PBS_0.25_B_30_C_14_D_23_E_11_EXP_42_NUM_562

Phys101	Final-102	Zero Version
	Wednesday, June 08, 2011	Page: 26

Q30.

A simple pendulum of length L_1 has time period T_1 . A second simple pendulum of length L_2 has time period T_2 . If $T_2 = 2 T_1$, find the ratio L_1/L_2 .

A) 1/4
B) 1/2
C) 4
D) 2
E) 1

Solution:

 $T_1 = 2\pi \sqrt{\frac{L_1}{g}}$ $T_2 = 2\pi \sqrt{\frac{L_2}{g}}$ $\sqrt{\frac{L_1}{L_2}} = \frac{T_1}{T_2} = \frac{1}{2}$ $\frac{L_1}{L_2} = \frac{1}{4}$

Stat# A_52_DIS_0.55_PBS_0.40_B_19_C_17_D_9_E_4_EXP_50_NUM_562