Phys101	Final-171	Zero Version
Coordinator: Dr. S. Kunwar	Monday, January 01, 2018	Page: 1

01.

A particle is moving with constant acceleration of -8.0 m/s^2 along the x-axis. At time t = 0 its position is 10 m and is moving with the velocity of 10 m/s. Find the position of the particle at t = 4.0 s.

- A) -14 m
- B) +24 m
- C) -43 m
- D) +7.0 m
- E) +9.2 m

Q2.

If vector \vec{B} is added to vector $\vec{C} = 3.0\hat{\imath} + 4.0\hat{\jmath}$, the result is a vector in the positive direction of the y-axis, with a magnitude equal to that of \vec{C} . The magnitude of the vector \vec{B} is:

- A) 3.2
- B) 2.1
- C) 1.5
- D) 5.6
- E) 7.6

Q3.

A particle's position vector is initially $\vec{r} = 5.0\hat{\imath} - 6.0\hat{\jmath}$, and 10 s later it is $\vec{r} = -2.0\hat{\imath} + 8.0\hat{\jmath}$, all distances are in meters. What is the magnitude of the average velocity during this 10 s interval?

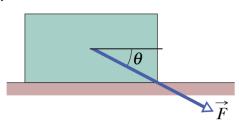
- A) 1.6 m/s
- B) 2.8 m/s
- C) 7.2 m/s
- D) 6.1 m/s
- E) 4.5 m/s

Q4.

A very small ball rolls horizontally off the edge of a tabletop that is 1.20 m high. It strikes the floor at a point 1.52 m horizontally from the table edge. What is its speed at the instant it leaves the table?

- A) 3.07 m/s
- B) 2.05 m/s
- C) 7.26 m/s
- D) 6.24 m/s
- E) 1.15 m/s

Phys101	Final-171	Zero Version
Coordinator: Dr. S. Kunwar	Monday, January 01, 2018	Page: 2


O5.

An elevator cab of mass 2780 kg moves downward. What is the tension in the cable if the cab's speed is decreasing at a rate of 1.22 m/s²?

- A) $3.06 \times 10^4 \text{ N}$
- B) $1.13 \times 10^4 \text{ N}$
- C) $8.43 \times 10^4 \text{ N}$
- D) $5.16 \times 10^4 \text{ N}$
- E) $7.12 \times 10^4 \text{ N}$

06.

A 3.5 kg block is pushed along a horizontal floor by a force \vec{F} of magnitude 15 N at an angle $\theta = 40^{\circ}$ with the horizontal as shown in **Figure 1**. The coefficient of kinetic friction between the block and the floor is 0.25. Calculate the magnitude of the block's acceleration.

- A) 0.14 m/s^2
- B) 0.26 m/s^2
- C) 0.37 m/s^2
- D) 0.71 m/s^2
- E) 0.45 m/s^2

O7.

A block is attached to the end of an ideal spring and moved from coordinate x_i to coordinate x_f . The relaxed position is at x = 0. For which values of x_i and x_f , is the work done by spring on the block positive?

- A) $x_i = -6$ cm and $x_f = -4$ cm
- B) $x_i = -4$ cm and $x_f = 6$ cm
- C) $x_i = 4$ cm and $x_f = 6$ cm
- D) $x_i = -4$ cm and $x_f = -4$ cm
- E) $x_i = -6$ cm and $x_f = 7$ cm

Q8.

A 5.00-kg box starts to slide up a 30.0° incline with 275 J of kinetic energy. How far will it slide up the incline if the coefficient of kinetic friction between the box and the incline is 0.350?

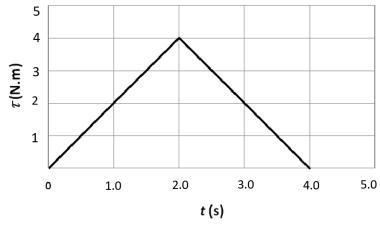
- A) 6.99 m
- B) 2.25 m
- C) 8.80 m
- D) 5.23 m
- E) 3.43 m

Phys101	Final-171	Zero Version
Coordinator: Dr. S. Kunwar	Monday, January 01, 2018	Page: 3

Q9.

Two objects, A and B, each of mass 2.0 kg, move with velocities $\vec{v}_A = (2.0\hat{\imath} + 5.0\hat{\jmath})$ m/s and $\vec{v}_B = (2.0\hat{\imath} - 5.0\hat{\jmath})$ m/s collide and stick together. After the collision, what is the kinetic energy of the composite object?

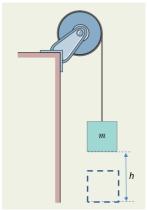
- A) 8.0 J
- B) 2.6 J
- C) 4.5 J
- D) 5.0 J
- E) 1.5 J


Q10.

The angular speed of an automobile engine is increased at a constant rate from rest to 50 rev/s in 10 s. How many revolutions does the engine make during this 10 s interval?

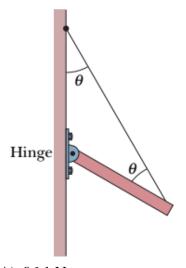
- A) 250
- B) 100
- C) 430
- D) 500
- E) 360

Q11.


Figure 2 shows a graph of a torque applied to a rotating body as a function of time. What is the magnitude of the angular momentum of the rotating body at t = 4.0 s, assuming it was initially at rest?

- A) $8.0 \text{ kg.m}^2/\text{s}$
- B) $1.0 \text{ kg.m}^2/\text{s}$
- C) $4.3 \text{ kg.m}^2/\text{s}$
- D) $5.0 \text{ kg.m}^2/\text{s}$
- E) $2.6 \text{ kg.m}^2/\text{s}$

Q12.


A disc of radius 0.20 m is mounted on a fixed frictionless horizontal axis passing through the center of the disc as shown in **Figure 3**. The rotational inertia of the disc about this axis is 0.50 kg.m^2 . A massless cord wrapped around the circumference of the disc is attached to a block of mass m = 2.5 kg. The block is then released from rest. Find the speed of the block when it falls a height of h = 0.70 m.

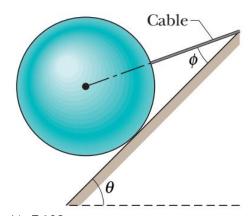
- A) 1.5 m/s
- B) 3.0 m/s
- C) 4.3 m/s
- D) 5.0 m/s
- E) 8.6 m/s

Q13.

In **Figure 4**, one end of a uniform beam of weight 222 N is hinged to a wall; the other end is supported by a wire of negligible mass that makes angles $\theta = 30.0^{\circ}$ with both wall and beam. Find the horizontal component of the force of the hinge on the beam

- A) 96.1 N
- B) 66.1 N
- C) 41.3 N
- D) 23.5 N
- E) 87.3 N

Phys101	Final-171	Zero Version
Coordinator: Dr. S. Kunwar	Monday, January 01, 2018	Page: 5


O14.

Aluminum Rod 1 has a length L and a diameter d. Aluminum Rod 2 has a length 2L and a diameter 2d. When Rod 1 is under tension T and Rod 2 is under tension 2T, the changes in lengths of rods 1 and 2 are ΔL_1 and ΔL_2 , respectively. Which one of the following is **TRUE**?

- A) $\Delta L_2 = \Delta L_1$
- B) $\Delta L_2 = 2 \Delta L_1$
- C) $\Delta L_1 = 2 \Delta L_2$
- D) $\Delta L_1 = 4\Delta L_2$
- E) $\Delta L_2 = 4\Delta L_1$

Q15.

In **Figure 5**, a 10 kg sphere is supported on a frictionless plane inclined at angle $\theta = 45^{\circ}$ from the horizontal. Angle ϕ is 25°. Calculate the tension in the cable.

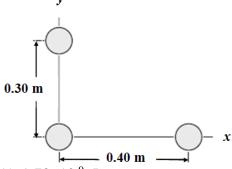
- A) 76 N
- B) 35 N
- C) 48 N
- D) 52 N
- E) 15 N

Q16.

A satellite is in a circular orbit about the Earth at an altitude at which air resistance is negligible. Which of the following statements is true?

- A) There is only one force acting on the satellite.
- B) There are two forces acting on the satellite, and their resultant is zero.
- C) There are two forces acting on the satellite, and their resultant is not zero.
- D) There are three forces acting on the satellite.
- E) No force is acting on the satellite.

Phys101	Final-171	Zero Version
Coordinator: Dr. S. Kunwar	Monday, January 01, 2018	Page: 6


Q17.

A projectile is fired vertically upward from Earth's surface with an initial speed of 10 km/s. Neglecting air resistance, how far above the surface of Earth will it go?

- A) 2.5×10^7 m
- B) 3.5×10^7 m
- C) $1.0 \times 10^7 \text{ m}$
- D) $6.5 \times 10^7 \text{ m}$
- E) 7.5×10^7 m

O18.

Three 5.00-kg masses are located at three points in the xy plane, as shown in **Figure 6**. Find the magnitude of work required to take the mass at x = 0, y = 0; to infinity.

- A) 9.73×10⁻⁹ J
- B) 3.17×10⁻⁹ J
- C) 5.36×10^{-9} J
- D) 1.35×10^{-9} J
- E) 7.14×10^{-9} J

Q19.

At what altitude above Earth's surface would the magnitude of gravitational acceleration be 3.2 m/s^2 ?

- A) 4.8×10^6 m
- B) 7.2×10^6 m
- C) 2.5×10^6 m
- D) 1.3×10^6 m
- E) 8.7×10^6 m

O20.

A satellite travels around the planet Mars in a circular orbit of radius 9.4×10⁶ m with a period of 7 h 39 min. Calculate the mechanical energy of the satellite if its mass is 1.1×10^{16} kg.

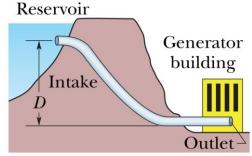
- A) $-2.5 \times 10^{22} \text{ J}$
- B) $+2.5\times10^{22}$ J
- C) $-3.5 \times 10^{22} \text{ J}$
- D) $+3.5\times10^{22} \text{ J}$
- E) $-4.3 \times 10^{22} \text{ J}$

Phys101	Final-171	Zero Version
Coordinator: Dr. S. Kunwar	Monday, January 01, 2018	Page: 7

O21.

Based on the fact that one atmospheric pressure is being exerted on the Earth's surface, find the total mass of the Earth's atmosphere. The radius of the Earth is 6.37×10^6 m.

- A) $5.26 \times 10^{18} \text{ kg}$
- B) $2.15 \times 10^{18} \text{ kg}$
- C) $1.53 \times 10^{18} \text{ kg}$
- D) $7.40 \times 10^{18} \text{ kg}$
- E) $4.37 \times 10^{18} \text{ kg}$


O22.

Three liquids that will not mix are poured into a uniform cylindrical container of cross-section area 20 cm^2 . The volumes and densities of the liquids are 0.50 L, 2.6 g/cm^3 ; 0.25 L, 1.0 g/cm^3 ; and 0.40 L, 0.80 g/cm^3 . What is the pressure on the bottom of the container due to these liquids? One liter = $1 \text{ L} = 1000 \text{ cm}^3$. (Ignore the contribution due to the atmosphere.)

- A) $9.2 \times 10^3 \text{ Pa}$
- B) $1.3 \times 10^3 \text{ Pa}$
- C) $3.4 \times 10^3 \text{ Pa}$
- D) $6.5 \times 10^3 \text{ Pa}$
- E) $4.5 \times 10^3 \text{ Pa}$

Q23.

The intake in **Figure 7** has a cross-sectional area of 0.74 m^2 and water flows in at 0.40 m/s. At the outlet, a distance D =180 m below the intake, the cross-sectional area is smaller than at the intake and the water flows out at 9.5 m/s. What is the magnitude of pressure difference between inlet and outlet?

- A) $1.7 \times 10^6 \text{ Pa}$
- B) $2.5 \times 10^6 \text{ Pa}$
- C) $3.2 \times 10^6 \text{ Pa}$
- D) $8.6 \times 10^6 \text{ Pa}$
- E) $5.5 \times 10^6 \text{ Pa}$

Phys101	Final-171	Zero Version
Coordinator: Dr. S. Kunwar	Monday, January 01, 2018	Page: 8

Q24.

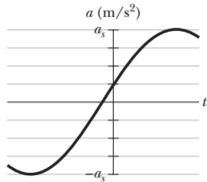
An iron casting (block) containing a number of cavities weighs 6000 N in air and 4000 N in water. What is the total volume of all the cavities in the casting? The density of iron (that is, a sample with no cavities) is 7870 kg/m^3 .

- A) 0.126 m^3
- B) 0.235 m^3
- C) 0.723 m^3
- D) 0.427 m^3
- E) 0.315 m^3

Q25.

A natural gas pipeline with a diameter 0.250 m delivers 1.55 cubic meters of gas per second. What is the flow speed of the gas in the pipeline?

- A) 31.6 m/s
- B) 17.0 m/s
- C) 24.8 m/s
- D) 83.0 m/s
- E) 62.5 m/s


O26.

The function $x = (6.0 \text{ m}) \cos[(2\pi \text{ rad/s})t]$ describes the simple harmonic motion of a body. The average speed of the body from t = 0 to t = 7.0 s is?

- A) 24 m/s
- B) 32 m/s
- C) 64 m/s
- D) 83 m/s
- E) 15 m/s

Q27.

What is the phase constant of the simple harmonic motion with a(t) given in **Figure 8**, if the position function has the form $x = x_m \cos(\omega t + \varphi)$ and $a_s = 4.0 \text{ m/s}^2$?

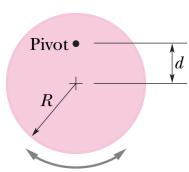
- A) 105°
- B) 135°
- C) 215°
- D) 175°
- E) 315°

Phys101 Final-171 Zero Version
Coordinator: Dr. S. Kunwar Monday, January 01, 2018 Page: 9

Q28.

A simple harmonic oscillator consists of a 0.800 kg block attached to a spring (k = 200 N/m). The block slides on a horizontal frictionless surface about the equilibrium point x = 0 with a total mechanical energy of 4.00 J. What is the speed of the block at x = 0.150 m?

- A) 2.09 m/s
- B) 1.28 m/s
- C) 4.50 m/s
- D) 3.25 m/s
- E) 7.64 m/s


Q29.

A block of mass m is suspended by a vertical spring and oscillates with angular frequency ω_1 . When the mass of the block is doubled it oscillates with angular frequency ω_2 . Find the ratio $\frac{\omega_2}{\omega_1}$.

- A) $\frac{1}{\sqrt{2}}$
- B) 1
- C) $\sqrt{2}$
- D) 2
- E) 4

Q30.

In **Figure 9**, a physical pendulum consists of a uniform solid disk (radius R = 2.35 cm) supported in a vertical plane by a pivot located a distance d = 1.75 cm from the center of the disk. The disk is displaced by a small angle and released. What is the period of the resulting simple harmonic motion?

- A) 0.366 s
- B) 0.132 s
- C) 0.541 s
- D) 0.210 s
- E) 0.912 s