Phys101	Final	Code: 1
Term: 132	Wednesday, May 21, 2014	Page: 1

Q1.

A car accelerates at 2.0 m/s² along a straight road. It passes two marks that are 30 m apart at times t = 4.0 s and t = 5.0 s. Find the car's velocity at t = 0.

A) 21 m/s

B) 34 m/s

C) 16 m/s

D) 11 m/s

E) 48 m/s

Q2.

Two vectors are given by $\vec{A} = 1.00\hat{i} + 2.00\hat{j}$ and $\vec{B} = 1.00\hat{i} + 3.00\hat{j}$. Find the angle that the vector $\vec{A} - 2\vec{B}$ makes with the positive y-axis.

A) 166°

B) 100°

C) 133°

D) 111°

E) 173°

Q3.

A projectile's launch speed is 4 times its speed at maximum height. Find the launch angle from the horizontal.

A) 75.5°
B) 70.6°
C) 45.3°
D) 32.0°
E) 49.2°

L) 17.2

Q4.

A particle moves at constant speed in a circular path. The instantaneous velocity and instantaneous acceleration vectors are both:

A) Perpendicular to each other

B) Perpendicular to the circular path

C) tangent to the circular path

D) Opposite to each other

E) Parallel to each other

Phys101	Final	Code: 1
Term: 132	Wednesday, May 21, 2014	Page: 2

Q5.

An elevator initially moving upward is slowing down at a rate of 1.50 m/s². If the tension in the cable is 3.20×10^3 N then find the weight of the elevator.

A) 3.78×10^{3} N B) 1.53×10^{4} N C) 5.20×10^{5} N D) 1.72×10^{3} N E) 5.92×10^{3} N

Q6.

A 12 N horizontal force is applied to a 4.1 kg block initially at rest on a rough horizontal surface. If the coefficients of friction are $\mu_s = 0.5$ and $\mu_k = 0.4$. Find the magnitude of the frictional force on the block.

A) 12 N
B) 16 N
C) 10 N
D) 20 N
E) 8.0 N

Q7.

A single force *F* acts on a block of mass m = 3.0 kg from t = 0 s to t = 4.0 s. If the position of the block is given by $x = t^3 - 5.2t$ then find the work done on the block by *F*.

A) 2.7×10^{3} J B) 5.4×10^{3} J C) 4.2×10^{3} J D) 6.7×10^{3} J E) 1.2×10^{3} J

Q8.

The Rotational inertia of an object does not depend upon:

A) Its angular velocity.

B) Its mass.

- C) Its size and shape.
- D) The location of the axis of rotation.
- E) The distribution of its mass.

Phys101	Final	Code: 1
Term: 132	Wednesday, May 21, 2014	Page: 3

Q9.

A uniform meter stick pivoted at 10.0 cm mark is oscillating. Find the period of oscillation.

A) 1.57 s

B) 2.32 s

C) 3.60 s

D) 4.15 s

E) 3.43 s

Q10.

A thin uniform rod of length 1.5 m and mass 0.50 kg is suspended freely from one end. It is pulled to one side and then allowed to swing like a pendulum, passing through its lowest position with angular speed 5.0 rad/s. Neglecting friction and air resistance, find the rod's kinetic energy at its lowest position.

A) 4.7 J
B) 1.2 J
C) 9.4 J
D) 0.90 J
E) 7.8 J

Q11.

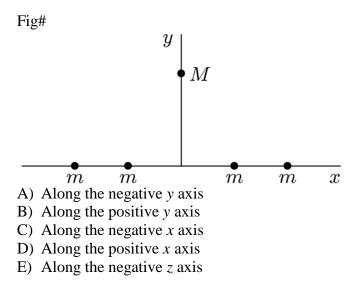
A force of magnitude 10.0 N acts on a rigid body. The force lies in the *xy* plane. Its line of action passes through the point (0.500, 0.00) and makes an angle of 30.0° with the positive *x*-axis. Find the torque of the force about the point (-0.300, 0.00).


A) + 4.00 \hat{k} (N.m) B) - 4.00 \hat{k} ((N.m) C) +1.00 \hat{k} ((N.m) D) - 1.00 \hat{k} ((N.m) E) + 6.93 \hat{i} ((N.m)

Phys101	Final	Code: 1
Term: 132	Wednesday, May 21, 2014	Page: 4

Q12.

A horizontal uniform beam of weight 1000 N is supported by a hinge at one end and by a cable at the other end, as shown in **Figure 1**. Find the magnitude of the force exerted on the beam by the hinge.


Fig#

A) 1000 N
B) 1200 N
C) 780.0 N
D) 1500 N
E) 892.0 N

Q13.

Four particles, each with mass m, are arranged symmetrically about the origin on the x axis, as shown in **Figure 2**. A fifth particle, with mass M, is on the y axis. The direction of the gravitational force on M is:

Phys101	Final	Code: 1
Term: 132	Wednesday, May 21, 2014	Page: 5

Q14.

A uniform solid sphere has a mass of 1.5×10^4 kg and a radius of 1.0 m. Find the magnitude of the gravitational force due to the sphere on a particle of mass m = 1.0 kg located at a distance of 0.75 m from the center of the sphere.

A) 7.5×10^{-7} N B) 1.9×10^{-7} N C) 3.6×10^{-7} N D) 9.9×10^{-7} N E) 0

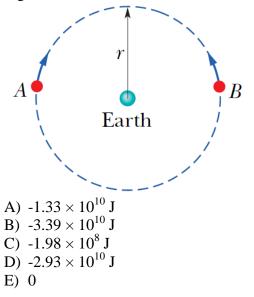
Q15.

A planet has a mass of about 0.0558 times the mass of Earth and a diameter of about 0.381 times the diameter of Earth. The acceleration of a body falling near the surface of this planet is: (take acceleration due to gravity on earth to be 9.8 m/s^2)

A) 3.77 m/s²
B) 1.50 m/s²
C) 5.95 m/s²
D) 9.80 m/s²
E) 2.42 m/s²

Q16.

Neglecting air resistance, a 1.0 kg projectile has an escape speed of about 11 km/s at the surface of Earth. Find the corresponding escape speed for a 2.0 kg projectile.


- A) 11 km/s
- B) 7.2 km/s
- C) 15 km/s
- D) 5.5 km/s
- E) 22 km/s

Phys101	Final	Code: 1
Term: 132	Wednesday, May 21, 2014	Page: 6

Q17.

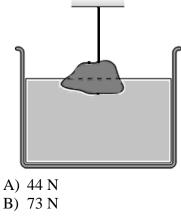
Two satellites *A* and *B* of same mass of 130 kg are shown in **Figure 3**, and move in the same circular orbit of radius $r = 7.77 \times 10^6$ m around earth but of opposite senses of rotation and therefore they are expected to collide. If the collision is completely inelastic, find the total mechanical energy immediately after collision.

Fig#

Q18.

At a fixed depth within a fluid at rest, the pressure pushing upward is:

A) Equal to pressure pushing downward.

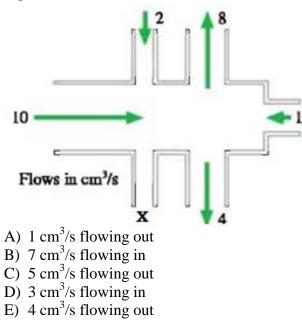

- B) Zero, because pressure only pushes equal in all horizontal direction.
- C) Zero, because the fluid above does not support the weight of the fluid below.
- D) Greater than the pressure pushing downward.
- E) Less than the pressure pushing downward.

Phys101	Final	Code: 1
Term: 132	Wednesday, May 21, 2014	Page: 7

Q19.

A 5.0 kg rock whose density is 4800 kg/m^3 is suspended by a string such that half of the rock's volume is under water (see **Figure 4**). Find the tension in the string.

Fig#

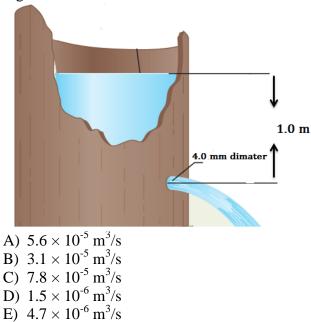


C) 32 N
D) 68 N
E) 21 N

Q20.

Figure 5 shows volume flow rates (in cm^3/s) of a fluid from all but one tube. Assuming steady flow of the fluid, find the volume flow rate through the **X** tube and its direction.

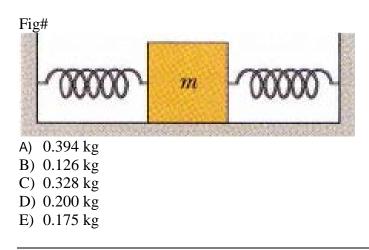
Fig#



Phys101	Final	Code: 1
Term: 132	Wednesday, May 21, 2014	Page: 8

Q21.

A 4.0 mm diameter hole is 1.0 m below the surface of a large tank of water as shown in **Figure 6**. Find water volume flow rate through the hole.


Q22.

For an object undergoing a simple harmonic motion. Only one statement is correct

- A) The object has varying acceleration.
- B) The object has varying amplitude.
- C) The object has varying period.
- D) The object has varying frequency.
- E) The object has varying total mechanical energy.

Q23.

As shown in **Figure 7**, two identical springs of spring constant 7.00×10^3 N/m are attached to a block that is sitting on a frictionless floor. If the frequency of oscillation is 30.0 Hz, find the mass of the block.

Phys101	Final	Code: 1
Term: 132	Wednesday, May 21, 2014	Page: 9

Q24.

A 3.000 kg block, attached to a spring, executes simple harmonic motion. The position of the block is given as: $x = 2.000\cos(50.00t)$ where x is in meters and t is in seconds. Find the spring constant of the spring:

- A) 7500 N/m
- B) 6800 N/m
- C) 9000 N/m
- D) 2560 N/m
- E) 4700 N/m

Q25.

A 50 kg boy stands on frictionless level ice floor. He kicks a 0.10 kg stone lying near his feet if the velocity of the stone is $(1.1 \text{ m/s})\hat{i}$, find the velocity of the boy just after kicking the stone.

A) $(-2.2 \times 10^{-3} \text{ m/s})\hat{i}$ B) $(2.0 \times 10^{-3} \text{ m/s})\hat{i}$ C) $(1.1 \times 10^{-3} \text{ m/s})\hat{i}$ D) $(-1.2 \times 10^{-3} \text{ m/s})\hat{i}$ E) 0