An 800-N man stands half-way up a 5.0-m long ladder of negligible weight. The base of the ladder is 3.0m from the wall as shown in **Figure 1**. Assuming that the wall-ladder contact is frictionless, then the magnitude of normal force of the wall on the ladder is:

Fig#

- A) 300 N
- B) 150 N
- C) 400 N
- D) 600 N
- E) 800 N

Stat# A_28_DIS_0.39_PBS_0.34_B_7_C_33_D_13_E_19_EXP_60_NUM_457

Q2.

A cube with edges exactly 2.0 m long is made of material with a bulk modulus of 3.5×10^9 N/m². When it is subjected to a pressure of 7.0×10^5 Pa its change in the volume is:

- A) $-1.6 \times 10^{-3} \text{ m}^3$
- B) $-1.2 \times 10^{-3} \text{ m}^3$
- C) $-3.2 \times 10^{-3} \text{ m}^3$
- D) $-4.8 \times 10^{-4} \text{ m}^3$
- E) $-8.0 \times 10^{-4} \text{ m}^3$

Stat# A_73_DIS_0.48_PBS_0.38_B_5_C_7_D_8_E_6_EXP_55_NUM_457

O3.

A uniform beam of length 6.0 m and mass 150 kg is pivoted to a vertical wall at point O and is suspended horizontally by a rope of negligible mass making an angle $\theta = 60^{\circ}$ with the wall as shown in **Figure 2**. An unknown mass m is hanged at point P, 4.0 m away from the pivot point O. If the system is in equilibrium as shown with the tension in the rope equal to 2.15×10^3 N, what is the value of mass m?

Fig#

- A) 52 kg
- B) 39 kg
- C) 26 kg
- D) 100 kg
- E) 23 kg

Stat# A_46_DIS_0.60_PBS_0.46_B_17_C_13_D_13_E_11_EXP_55_NUM_457

Q4.

A picture is to be hung from the ceiling by means of two wires as shown in **Figure 3**. Order the following arrangements of the wires according to the tension in wire B, **from least to greatest**.

Fig#

- A) II, I, III
- B) I, II, III
- C) III, I, II
- D) I, III, II
- E) III, II, I

Stat# A_53_DIS_0.36_PBS_0.32_B_11_C_21_D_6_E_9_EXP_60_NUM_457

Q5.

A satellite is put in a circular orbit about Earth with radius = $8\,R_E$ and period of T_1 . The satellite had been moved to another circular orbit of radius $2\,R_E$, and its period became T_2 . The ratio T_1 / T_2 will be equal to:

- A) 8.00
- B) 0.125
- C) 0.250
- D) 0.50
- E) 4.00

Stat# A_62_DIS_0.50_PBS_0.39_B_4_C_7_D_7_E_21_EXP_60_NUM_457

Q6.

A planet X has radius and mass equal to $\frac{R_E}{4}$ and $\frac{M_E}{8}$ respectively, where R_E and M_E are

Earth's radius and mass. If the escape velocity of an object from the surface of Earth is 11.2 km/s, then escape velocity of the same object from the surface of the planet X would be:

- A) 7.92 km/s
- B) 15.8 km/s
- C) 5.60 km/s
- D) 22.4 km/s
- E) 1.01 km/s

Stat# A_71_DIS_0.35_PBS_0.31_B_8_C_9_D_8_E_3_EXP_45_NUM_457

Q7.

In space, sphere A of mass 20.0 kg is located at the origin of an x-axis and sphere B of mass 10.0 kg is located on the x-axis at x = 0.80 m. Sphere B is released from rest while sphere A is held at the origin. What is the kinetic energy of B when it has moved 0.20 m toward A?

- A) $5.6 \times 10^{-9} \text{ J}$
- B) $5.0 \times 10^{-8} \text{ J}$
- C) $8.3 \times 10^{-8} \text{ J}$
- D) $3.9 \times 10^{-9} \text{ J}$
- E) $1.8 \times 10^{-9} \text{ J}$

Stat# A_32_DIS_0.39_PBS_0.38_B_12_C_16_D_22_E_17_EXP_50_NUM_457

Phys101	Final-112	Zero Version
	Monday, May 21, 2012	Page: 4

If the radius of a star were to reduce by 50%, while it's mass remain the same, the acceleration due to gravity on the star's surface would:

- A) increase by a factor of 4
- B) decrease by a factor of 4
- C) increase by a factor of 8
- D) decrease by a factor of 8
- E) decrease by a factor of 16

Stat# A_72_DIS_0.48_PBS_0.42_B_16_C_4_D_6_E_2_EXP_55_NUM_457

Q9.

A column of oil of height 70.0 cm supports a column of an unknown liquid as suggested in the Figure 4 (not drawn to scale). Assume that both liquids are at rest and that the density of the oil is 8.40×10^2 kg/m³. Determine the density of the unknown liquid.

- C) $2.6 \times 10^3 \text{ kg/m}^3$
- D) $3.6 \times 10^3 \text{ kg/m}^3$
- E) $4.9 \times 10^3 \text{ kg/m}^3$

Stat# A_68_DIS_0.40_PBS_0.34_B_10_C_6_D_12_E_4_EXP_60_NUM_457

Q10.

For the hydraulic lift systems shown in Figure 5, rank in order from largest to smallest, the magnitudes of the forces \vec{F}_a , \vec{F}_b and \vec{F}_c required to balance the masses? The masses are in kilograms.

Fig#

A)
$$\left| \vec{F}_b \right| > \left| \vec{F}_a \right| = \left| \vec{F}_c \right|$$

B)
$$\left| \vec{F}_a \right| > \left| \vec{F}_b \right| = \left| \vec{F}_c \right|$$

C)
$$\left| \vec{F}_a \right| = \left| \vec{F}_b \right| = \left| \vec{F}_c \right|$$

D)
$$\left| \vec{F}_b \right| < \left| \vec{F}_a \right| < \left| \vec{F}_c \right|$$

E)
$$\left| \vec{F_c} \right| = \left| \vec{F_b} \right| > \left| \vec{F_a} \right|$$

Stat# A_26_DIS_0.23_PBS_0.25_B_5_C_9_D_2_E_58_EXP_60_NUM_457

Q11.

Figure 6 shows a 2.00-kg block tied, by string, to a bottom of a container filled to the rim with water. If the displaced water has a mass of 5.00 kg, find the tension in the string.

Fig#

- A) 29.4 N
- B) 10.2 N
- C) 22.8.N
- D) 7.00 N
- E) 100 N

Stat# A_68_DIS_0.53_PBS_0.40_B_11_C_10_D_7_E_4_EXP_45_NUM_457

A bucket with 0.0189-m³ is to be filled through a pipe with 0.00780 m radius. If the water flows through the pipe end with a speed of 0.610 m/s, how long does it take to fill the bucket completely?

- A) 162 s
- B) 170 s
- C) 119 s
- D) 280 s
- E) 490 s

Stat# A_48_DIS_0.54_PBS_0.43_B_13_C_15_D_12_E_12_EXP_45_NUM_457

Q13.

A glass tube has several different cross-sectional areas with the values indicated in the **Figure 7**. A piston at the left end of the tube exerts pressure so that mercury within the tube flows from the right end with a speed of 8.0 m/s. Three points within the tube are labeled A, B, and C. What is the total pressure at point A? Atmospheric pressure is 1.01×10^5 N/m²; and the density of mercury is 1.36×10^4 kg/m³.

Fig#

- A) $4.27 \times 10^5 \text{ Pa}$
- B) $2.02 \times 10^5 \text{ Pa}$
- C) $2.25 \times 10^5 \text{ Pa}$
- D) $3.26 \times 10^5 \text{ Pa}$
- E) 1.01×10^5 Pa

Stat# A_21_DIS_0.24_PBS_0.29_B_18_C_21_D_19_E_20_EXP_40_NUM_457

O14.

In **Figure 8**, the horizontal block-spring system has a kinetic energy of $K = 5.0 \, J$ and an elastic potential energy of $U = 3.0 \, J$, when the block is at $x = +2.0 \, cm$. What are the kinetic and elastic potential energy when the block is at $x = -x_m$?

Fig#

Phys101 Final-112 Zero Version
Monday, May 21, 2012 Page: 7

- A) K = 0 and U = 8 J
- B) K = 5 J and U = 3 J
- C) K = 5 J and U = -3 J
- D) K = 8 J and U = 0
- E) K = 0 and U = -8 J

Stat# A_57_DIS_0.54_PBS_0.41_B_10_C_10_D_6_E_17_EXP_60_NUM_457

Q15.

A thin rod of length L = 1.5 m and mass M is pivoted at one end of the rod and is made to oscillate as a physical pendulum with frequency f. The value of f is:

- A) 0.50 Hz
- B) 2.5 Hz
- C) 0.25 Hz
- D) 1.0 Hz
- E) 2.0 Hz

Stat# A_47_DIS_0.39_PBS_0.31_B_19_C_9_D_17_E_7_EXP_55_NUM_457

Q16.

At t = 0, a particle is located at x = 25.0 m and has a velocity of 12.5 m/s in the positive x direction. The acceleration (a_x) of the particle varies with time (t) as shown in **Figure 9**. What is the velocity of the particle at t = 5.00 s?

- A) +30 m/s
- B) -15 m/s
- C) +15 m/s
- D) 0
- E) -1.2 m/s

Stat# A_24_DIS_0.26_PBS_0.29_B_23_C_22_D_7_E_23_EXP_55_NUM_457

Q17.

Figure 10 shows the trajectory of ball in Planet X. The ball's position is shown at 1.0 s intervals until t = 3.0 s. At t = 1.0 s, the ball's velocity is $(2.00 \ \hat{i} + 2.00 \ \hat{j})$ m/s. It reaches the maximum height at t = 2.0 s. What is the value of g (in m/s²) on this planet?

Fig#

- **A)** 2
- B) 3
- C) 4
- D) 9.8
- E) 1

Stat# A_36_DIS_0.42_PBS_0.33_B_14_C_15_D_16_E_18_EXP_45_NUM_457

Q18.

A 2.00-kg stone is tied to a string of length 0.500 m and whirled at a constant speed of 4.00 m/s in a vertical circle. The tension in the string at the bottom of the circle is:

- A) 83.6 N, up
- B) 44.4 N, up
- C) 9.80 N, down
- D) 44.4 N, down
- E) 83.6 N, down

Stat# A_32_DIS_0.35_PBS_0.34_B_28_C_11_D_15_E_13_EXP_60_NUM_457

Phys101	Final-112	Zero Version
	Monday, May 21, 2012	Page: 9

A 6.00-kg block is in contact with a 4.00-kg block on a frictionless surface as shown in **Figure 11**. The 6.00-kg block is being pushed by a 20.0-N force toward the 4.00-kg block. What is the magnitude of the force of the 6.00-kg block on the 4.00-kg block?

Fig#

- A) 8.00 N
- B) 12.0 N
- C) 6.00 N
- D) 4.00 N
- E) 10.0 N

Stat# A_41_DIS_0.39_PBS_0.30_B_29_C_9_D_9_E_12_EXP_60_NUM_457

O20.

A 16-kg fish is weighed with two identical, massless, spring scales, each of negligible weight, as shown in **Figure 12**. What will be the readings on the scales?

Fig#

- A) The sum of the two readings will be 32 kg
- B) The bottom scale will read 16 kg, and the top scale will read zero
- C) The top scale will read 16 kg, and the bottom scale will read zero.
- D) Each scale will show a reading greater than zero and less than 16 kg, but the sum of the two readings will be 16 kg
- E) Each scale will read 8 kg.

Stat# A_52_DIS_0.38_PBS_0.28_B_8_C_6_D_20_E_13_EXP_50_NUM_457

Q21.

When you travel, you always exert less force to pull a block M instead of pushing it, see **Figure 13**. That is F(pull) < F(push). Why?

- A) Because the normal force becomes less while pulling
- B) Because the normal force becomes more while pulling
- C) Because the normal force becomes zero while pulling
- D) Because the gravitational forces decreases while pulling
- E) No scientific reason it is just a habit.

Stat# A_59_DIS_0.49_PBS_0.37_B_24_C_4_D_9_E_5_EXP_50_NUM_457

Q22.

A 13-N weight and a 12-N weight are connected by a massless string over a massless, frictionless pulley as shown in **Figure 14**. The downward acceleration of 13-N weight is: (*g* is acceleration due to gravity)

Fig#

- A) g/25
- B) g/12
- C) g/13
- D) g
- E) g/2

Stat# A_32_DIS_0.45_PBS_0.39_B_15_C_14_D_32_E_6_EXP_60_NUM_457

Q23.

At t=0, a force F acts on 2-kg particle that has an initial velocity of $(4.0\hat{i}-3.0\hat{j})$ m/s. The velocity became $(2.0\hat{i}+3.0\hat{j})$ m/s at t=3 s. During this time interval the work done by the external force was:

- A) -12 J
- B) 4J
- C) -18 J
- D) $-40 \, \text{J}$
- E) $\left(4.0\,\hat{i} + 36.0\,\hat{j}\right)$ J

Stat# A_67_DIS_0.38_PBS_0.29_B_11_C_9_D_5_E_9_EXP_55_NUM_457

Q24.

Figure 15 shows a block of mass m = 2.0 kg attached to a horizontal ideal spring with a spring constant of k = 200 N/m. When the spring in its equilibrium position, the block is given a speed of v = 5.0 m/s. What is the maximum **compression** (d) of the spring?

- A) 0.50 m
- B) 0.05 m
- C) 0.25 m
- D) 10 m
- E) 0.12 m

Stat# A_63_DIS_0.55_PBS_0.44_B_8_C_16_D_4_E_9_EXP_60_NUM_457

Q25.

At t = 0, a horse pulls a cart with a force of 180 N at an angle of 30° above the horizontal and moves horizontally at a speed of 1.20 m/s. What is the instantaneous power (in Watts) of the force at t = 0?

- A) 187
- B) 150

Phys101 Final-112 Zero Version Monday, May 21, 2012 Page: 12

- C) 108
- D) 216
- E) 0

Stat# A_51_DIS_0.46_PBS_0.38_B_5_C_14_D_9_E_21_EXP_60_NUM_457

Q26.

Particle 1 with mass 2.0 kg and velocity $v_{1i} = (5.0 \,\hat{i})$ m/s m/s undergoes a one-dimensional elastic collision with particle 2 with mass 2.0 kg and velocity $v_{2i} = (-6.0 \,\hat{i})$ m/s. After the collision, the final velocities of particle 1 (v_{1f}) and particle 2 (v_{2f}) are:

A)
$$v_{1f} = (-6.0 \,\hat{i}) \text{ m/s}, \quad v_{2f} = (5.0 \,\hat{i}) \text{ m/s}$$

B)
$$v_{1f} = (6.0 \,\hat{i}) \text{ m/s}, \quad v_{2f} = (-5.0 \,\hat{i}) \text{ m/s}$$

C)
$$v_{1f} = (-11.0 \,\hat{i}) \text{ m/s}, \quad v_{2f} = (0.0 \,\hat{i}) \text{ m/s}$$

D)
$$v_{1f} = (0.0 \,\hat{i}) \text{ m/s}, \quad v_{2f} = (11.0 \,\hat{i}) \text{ m/s}$$

E)
$$v_{1f} = (-6.0 \,\hat{i}) \text{ m/s}, \quad v_{2f} = (-5.0 \,\hat{i}) \text{ m/s}$$

Stat# A_63_DIS_0.42_PBS_0.35_B_10_C_6_D_9_E_11_EXP_60_NUM_457

Q27.

A 2.00 kg particle has the xy coordinates (-1.20 m, 0.500 m), and a 4.00 kg particle has the xy coordinates (0.600 m, -1.0 m). Both lie on a horizontal plane. At what (x,y) coordinates must you place a 3.00 kg particle such that the center of mass of the three-particle system has the coordinates (0.00 m, 0.00 m)?

- A) (0.0, 1.0) m
- B) (1.0, 2.0) m
- C) (0.5, -1.0) m
- D) (-1.2, 1.0) m
- E) (-0.5, -1.5) m

Stat# A_67_DIS_0.51_PBS_0.41_B_7_C_10_D_8_E_7_EXP_60_NUM_457

Q28.

Five objects of mass m are under a force F at a distance from an axis of rotation perpendicular to the page through the point A, as shown in **Figure 16**. The one (or ones) that has zero torque about the axes through A is:

Phys101 Zero Version Final-112 Page: 13 Monday, May 21, 2012

- B) b, a
- C) a, e
- D) d
- E) e

Stat# A_68_DIS_0.48_PBS_0.40_B_15_C_2_D_12_E_3_EXP_60_NUM_457

$\overline{Q29}$.

A wheel rotates through an angle of 315° as it slows down uniformly from 90.0 rev/min to 30.0 rev/min. What is the magnitude of the angular acceleration of the wheel?

- A) 7.18 rad/s^2
- B) 2.34 rad/s²
- C) 6.50 rad/s²
- D) 8.35 rad/s²
- E) 10.9 rad/s²

Stat# A_46_DIS_0.53_PBS_0.41_B_14_C_14_D_13_E_13_EXP_60_NUM_457

Q30.

Figure 17 shows a boy of mass M= 50 kg standing at rest on the rim of a stationary turntable holding a rock of mass 2.0 kg in his hand. The turntable has a radius of R = 1.2 m and a rotational inertia of $I = 36 \text{ kg} \cdot \text{m}^2$ about its axis. The boy then throws the rock horizontally in a direction tangent to the rim of the turntable. Now the turntable starts to rotate with the boy with an angular speed of ω . If the speed of the rock relative to the ground is 5.0 m/s, find ω .

- A) 0.11 rad/s
- B) 0.33 rad/s

Phys101	Final-112	Zero Version
	Monday, May 21, 2012	Page: 14

- C) 0.16 rad/s
- D) 0.22 rad/s
- E) 0.38 rad/s

Stat# A_22_DIS_0.23_PBS_0.24_B_23_C_19_D_18_E_18_EXP_55_NUM_457