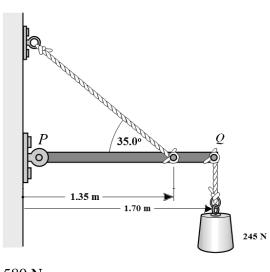

Phys101	Final-111	Zero Version
	Tuesday, January 10, 2012	Page: 1

Q1.

Figure 1 shows a solid cylindrical steel rod of length $\ell = 2.0$ m and diameter D = 2.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel = 1.9×10^{11} Pa)

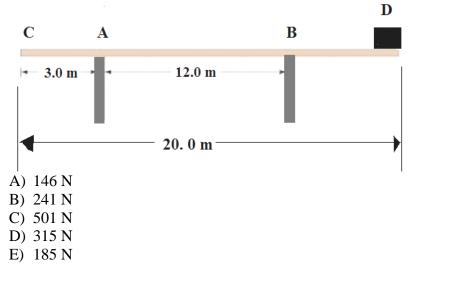

Fig#

Stat# A_64_DIS_0.61_PBS_0.48_B_15_C_7_D_5_E_8_EXP_55_NUM_880

Q2.

In Fig. 2, PQ is a horizontal uniform beam weighing 155 N. It is supported by a string and a hinge at point *P*. A 245 N block is hanging from point *Q* at the end of the beam. Find the horizontal component of net force on the beam from the hinge.

A) 580 NB) 310 NC) 491 N


- D) 164 N
- E) 200 N

Stat# A_35_DIS_0.68_PBS_0.55_B_18_C_19_D_16_E_12_EXP_50_NUM_880

Q3.

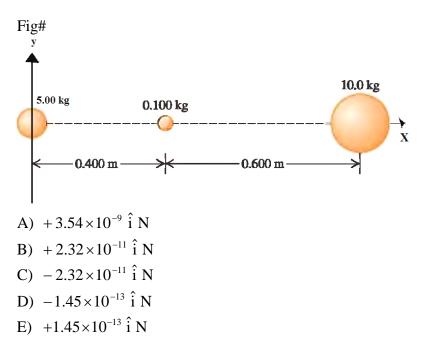
A 20.0 m long uniform beam weighing 550 N rests on supports "A" and "B", as shown in **Figure 3**. Find the magnitude of the force that the support "A" exerts on the beam when the block of weight 200 N is placed at **D**.

Fig#

Stat# A_45_DIS_0.67_PBS_0.52_B_14_C_6_D_19_E_15_EXP_50_NUM_880

Q4.

Phys101	Final-111	Zero Version
	Tuesday, January 10, 2012	Page: 3


At what height above earth's surface would the gravitational acceleration be 0.980 m/s^2 ?

A) 1.38×10^7 m B) 1.12×10^7 m C) 7.12×10^7 m D) 5.82×10^8 m E) 4.05×10^8 m

Stat# A_73_DIS_0.56_PBS_0.50_B_6_C_6_D_5_E_9_EXP_50_NUM_880

Q5.

In **Figure 4**, what is the net gravitational force exerted on the 5.00 kg uniform sphere by the other two uniform spheres?

Stat# A_74_DIS_0.42_PBS_0.36_B_10_C_9_D_3_E_4_EXP_50_NUM_880

Q6.

A rocket is launched from the surface of a planet of mass $M = 2.20 \times 10^{28}$ kg and radius $R = 5.35 \times 10^6$ m. What minimum initial speed is required if the rocket is to rise to a height of 6R above the surface of the planet? (Neglect the effects of the atmosphere).

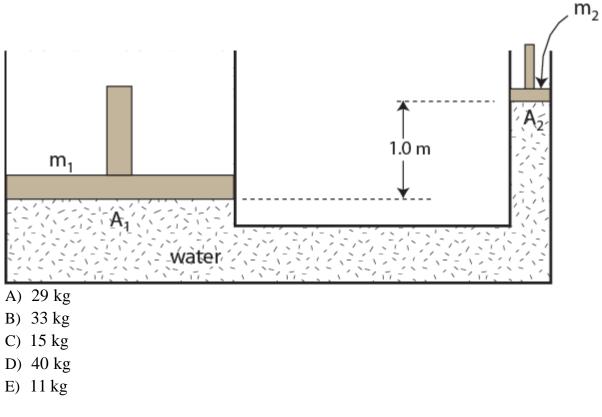
A) 6.86×10^5 m/s B) 3.44×10^5 m/s C) 2.18×10^6 m/s D) 8.20×10^6 m/s E) 9.45×10^5 m/s

Stat# A_43_DIS_0.58_PBS_0.47_B_29_C_13_D_7_E_8_EXP_50_NUM_880

Phys101	Final-111	Zero Version
	Tuesday, January 10, 2012	Page: 4

Q7.

A satellite of mass 200 kg is placed in Earth orbit at height of 200 km above the earth surface. How long does the satellite take to complete one circular orbit?

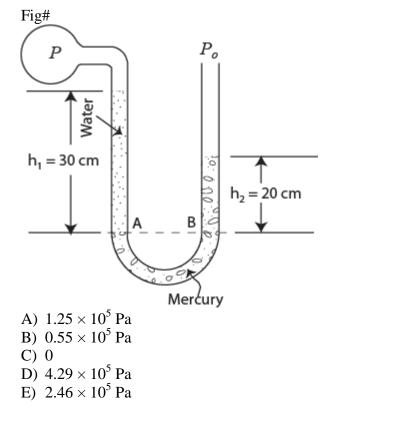

- A) 1.47 hours
- B) 2.77 hours
- C) 8.14 hours
- D) 9.56 hours
- E) 7.38 hours

Stat# A_45_DIS_0.75_PBS_0.59_B_16_C_16_D_10_E_13_EXP_50_NUM_880

Q8.

In a hydraulic press, shown in **Figure 5**, the large piston has a cross sectional area of $A_1 = 150$ cm² and mass $m_1 = 450$ kg. The small piston has a cross sectional area of $A_2 = 10$ cm² and mass m_2 . If the height difference between the two pistons is 1.0 m, what is the mass m_2 ? [Note: The fluid in the hydraulic press is water]

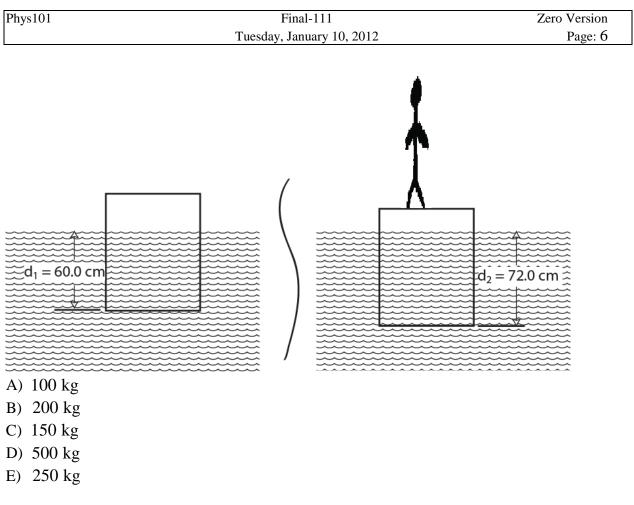
Fig#



Stat# A_51_DIS_0.44_PBS_0.34_B_25_C_10_D_9_E_5_EXP_50_NUM_880

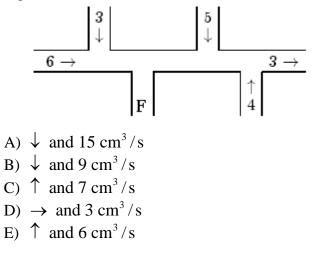
Q9.

Phys101	Final-111	Zero Version
	Tuesday, January 10, 2012	Page: 5


Figure 6 shows an open-tube manometer containing water and mercury. The height of water in the left column above the interface A is 30 cm while the height of mercury in the right column above B is 20 cm. The right column is open to the atmosphere P_0 . Find the pressure P in the bulb. (Take $P_0 = 1.01 \times 10^5$ Pa and ρ (mercury) $= 1.36 \times 10^4$ kg/m³).

Stat# A_61_DIS_0.65_PBS_0.51_B_6_C_9_D_8_E_16_EXP_50_NUM_880

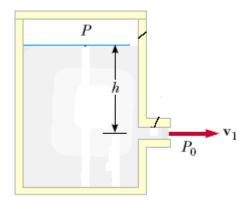
Q10.


A rectangular block, of area A and mass 500 kg, floats in still water with its submerged depth $d_1 = 60.0$ cm. When a man stands on the block, the submerged depth of the block becomes $d_2 = 72.0$ cm (see **Figure 7**). What is the man's mass?

Stat# A_60_DIS_0.34_PBS_0.29_B_9_C_17_D_5_E_10_EXP_50_NUM_880

Q11.

Figure 8 shows a pipe of uniform cross section in which water is flowing. The directions of flow and the volume flow rates (in cm^3/s) are shown for various portions of the pipe. The direction of flow and the volume flow rate in the portion marked F are:


Phys101	Final-111	Zero Version
-	Tuesday, January 10, 2012	Page: 7

Stat# A_71_DIS_0.56_PBS_0.46_B_9_C_9_D_3_E_9_EXP_60_NUM_880

Q12.

A closed large tank containing a liquid of density $\rho = 1.50 \times 10^3$ kg/m³ has a small hole in its side (See **Figure 9**) and is open to the atmosphere, P_o . The air above the liquid is maintained at a pressure of $P = 3 P_o$. Determine the speed, v_1 , of the liquid as it leaves the hole when the liquid's level is at a height h = 3.00 m above the hole. (take $P_o = 1.01 \times 10^5$ Pa)

Fig#

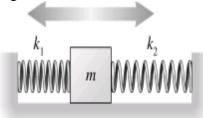
- A) 18.1 m/s
- B) 21.7 m/s
- C) 29.1 m/s
- D) 10.5 m/s
- E) 5.50 m/s

Stat# A_53_DIS_0.70_PBS_0.53_B_25_C_6_D_9_E_7_EXP_50_NUM_880

Q13.

A simple harmonic oscillator has amplitude of 3.50 cm and a maximum speed of 28.0 cm/s. What is its speed when the displacement of the oscillator is 1.75 cm?

- A) 24.2 cm/s
- B) 12.0 cm/s
- C) 14.2 cm/s
- D) 15.0 cm/s
- E) 17.0 cm/s


Stat# A_28_DIS_0.50_PBS_0.47_B_8_C_41_D_9_E_12_EXP_50_NUM_880

Q14.

Phys101	Final-111	Zero Version
	Tuesday, January 10, 2012	Page: 8

A 2.0 kg block on a frictionless horizontal table is connected to two springs whose opposite ends are fixed to walls, as shown in **Figure 10**. If the spring constants $k_1 = 7.6$ N/m and $k_2 = 5.0$ N/m, what is the angular frequency of oscillation of the block?

Fig#

A) 2.5 rad/sB) 3.5 rad/s

C) 0.56 rad/s

D) 0.40 rad/s

E) 1.3 rad/s

Stat# A_32_DIS_0.35_PBS_0.29_B_15_C_15_D_22_E_16_EXP_40_NUM_880

Q15.

The position of a 2.00 kg block, attached to spring and executing simple harmonic motion, is given by the equation:

$$x = (12.3 \text{ cm})\cos[(1.26 \text{ s}^{-1})t].$$

where t is the time in seconds. What is the total mechanical energy of the spring-block system at t = 0.815 s?

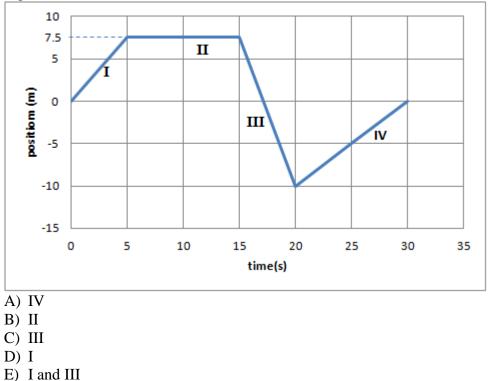
A) 2.40×10^{-2} J B) 4.48×10^{-2} J C) 1.12×10^{-2} J D) 8.96×10^{-2} J E) 6.72×10^{-2} J

Stat# A_53_DIS_0.55_PBS_0.42_B_12_C_12_D_11_E_12_EXP_50_NUM_880

Q16.

A simple pendulum of length L and mass M has frequency f. In order to increase its frequency to 2f we have to:

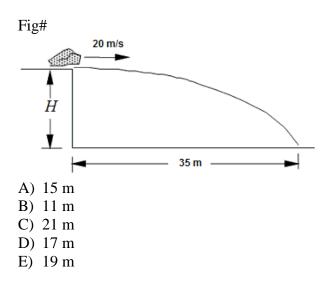
- A) decrease its length to L/4
- B) increase its length to 2L
- C) decrease its length to L/2
- D) increase its length to 4L
- E) decrease its mass to M/4


Stat# A_58_DIS_0.44_PBS_0.34_B_7_C_11_D_18_E_5_EXP_50_NUM_880

Q17. The value of $\hat{i} \cdot (\hat{k} \times \hat{j})$ is: A) -1 B) +1 C) zero D) 3 E) \hat{i} Stat# A_63_DIS_0.41_PBS_0.35_B_13_C_17_D_1_E_6_EXP_50_NUM_880

Q18.

An object is moving along a straight line in the positive *x* direction. **Figure 11** shows its position from the starting point as a function of time. Various segments of the graph are identified by the roman numerals I, II, III, and IV. Which segment(s) of the graph represent(s) **a constant velocity** of +1.0 m/s?

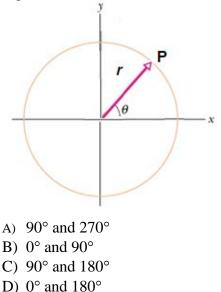


Stat# A_70_DIS_0.48_PBS_0.41_B_19_C_2_D_6_E_3_EXP_50_NUM_880

Q19.

Phys101	Final-111	Zero Version
	Tuesday, January 10, 2012	Page: 10

A rock is thrown horizontally at a speed of 20 m/s from the edge of a cliff of height H. The rock strikes the ground 35 m from the foot of the cliff as shown in **Figure 12**. What is the **height** H of cliff edge? Neglect air resistance.



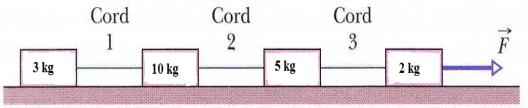
Stat# A_39_DIS_0.59_PBS_0.47_B_10_C_22_D_16_E_13_EXP_50_NUM_880

Q20.

Figure 13 shows a particle **P** moving in a horizontal circle with uniform angular velocity about the origin of an **xy coordinate system**. At what values of θ , the y-component of the particle acceleration a_y have maximum magnitude. (θ is measured counter clockwise from the positive x-axis)

Fig#

E) 0° and 270°

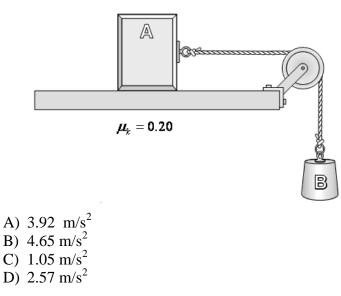

Phys101	Final-111	Zero Version
	Tuesday, January 10, 2012	Page: 11

Stat# A_55_DIS_0.29_PBS_0.25_B_9_C_8_D_23_E_6_EXP_55_NUM_880

Q21.

Figure 14 shows four blocks connected with three cords, being pulled to the right on a horizontal frictionless floor by a horizontal force F. Rank the cords according to their tension, **Greatest to least**.

Fig#



- A) 3,2,1
- B) All tie
- C) 2,1,3
- D) 1 and 2 tie then 3
- E) 1,3,2

Stat# A_46_DIS_0.27_PBS_0.22_B_31_C_13_D_3_E_6_EXP_50_NUM_880

Q22.

In Figure 15, blocks "A" and "B" have masses of $m_A = 25.0$ kg and $m_B = 25.0$ kg, respectively. Find the magnitude of the acceleration of mass "A" if the coefficient of kinetic friction between the block "A" and the horizontal table is $\mu_k = 0.20$. Assume the pulley is massless and frictionless.

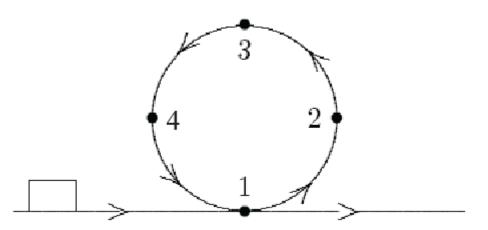
E) 9.80 m/s²

Stat# A_56_DIS_0.69_PBS_0.52_B_12_C_7_D_10_E_15_EXP_45_NUM_880

Q23.

At time t = 0 a 2.0-kg particle has a velocity of $(4.0 \,\hat{i} - 3.0 \,\hat{j})$ m/s. At t = 3.0 s its velocity is

 $(5.0 \,\hat{j})$ m/s. During this time interval the **work done** on it was:


- A) 0 J
- B) 2.0 J
- C) 25 J
- D) 50 J
- E) 12 J

Stat# A_67_DIS_0.46_PBS_0.36_B_6_C_11_D_4_E_12_EXP_50_NUM_880

Q24.

A block is moving along a frictionless horizontal track when it enters the circular vertical loop as shown in **Figure 16**. The block passes points 1, 2, 3, 4, 1 before returning to the horizontal track. Which one of the following statements describes the block at point 3 correctly?

Fig#

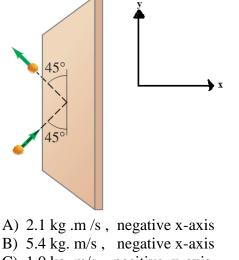
- A) Its speed is a minimum
- B) The forces on it are balanced
- C) It is not accelerating
- D) Its mechanical energy is a minimum
- E) It experiences a net upward force

Stat# A_44_DIS_0.44_PBS_0.35_B_25_C_10_D_10_E_10_EXP_50_NUM_880

Phys101	Final-111	Zero Version
	Tuesday, January 10, 2012	Page: 13

A block of mass m = 4.0 kg, initially moving to the right on a horizontal frictionless surface at a speed v = 2.0 m/s, is heading towards a spring of spring constant k = 200 N/m. At the instant when the kinetic energy of the block is equal to the potential energy of the spring, the spring is compressed by a distance of:

A) 20 cm


- B) 10 cm
- C) 15 cm
- D) 5.0 cm
- E) 100 cm

Stat# A_57_DIS_0.57_PBS_0.43_B_11_C_15_D_11_E_5_EXP_45_NUM_880

Q26.

A tennis ball of mass m = 0.060 kg and speed 25 m/s strikes a wall at 45° angle and rebound with the same speed at 45° as shown in **Figure 17**. What is the magnitude and direction of the impulse given to the ball?

Fig#

- C) 1.0 kg .m/s, positive x-axis
- D) 2.1 kg. m/s, positive y-axis
- E) 5.4 kg.m/s, negative y-axis

Stat# A_52_DIS_0.56_PBS_0.44_B_10_C_11_D_23_E_4_EXP_50_NUM_880

Q27.

If the total momentum of a system is changing:

- A) a net external force must be acting on the system
- B) particles of the system must be exerting forces on each other
- C) The center of mass must be at rest
- D) the center of mass must have constant velocity

Phys101	Final-111	Zero Version
	Tuesday January 10, 2012	$\mathbf{P}_{acc} \cdot 1 1$

E) none of the other answers

Stat# A_74_DIS_0.33_PBS_0.29_B_11_C_3_D_4_E_9_EXP_50_NUM_880

Q28.

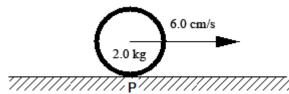
A disc, initially rotating at an angular speed of 120 rev/min about an axis passing through its symmetry axis, slows down with constant deceleration and stops 30 s later. How many revolutions did the disc make during this 30 s interval?

- A) 30
- B) 40
- C) 10
- D) 15
- E) 25

Stat# A_56_DIS_0.63_PBS_0.48_B_11_C_7_D_15_E_11_EXP_55_NUM_880

Q29.

A disk has a radius of 1.90 m. An applied torque of 96.0 N· m gives the disk an angular acceleration of 6.20 rad/s² about its central axis. What is the mass of the disk?


A) 8.58 kg

- B) 21.5 kg
- C) 14.3 kg
- D) 110 kg
- E) 172 kg

Stat# A_77_DIS_0.43_PBS_0.40_B_8_C_8_D_5_E_3_EXP_55_NUM_880

Q30.

Figure 18 shows a hoop with mass M = 2.0 kg rolling without slipping on a horizontal surface so that its center proceeds to the right with a constant speed of 6.0 cm/s. Which one of the following statements is **true** concerning the direction of angular momentum of this hoop about the contact point P?

- A) It points into the paper.
- B) It points out of the paper.
- C) It points to the left.
- D) It points to the right

Phys101	Final-111	Zero Version
	Tuesday, January 10, 2012	Page: 15

E) It points up.

Stat# A_39_DIS_0.29_PBS_0.24_B_21_C_17_D_17_E_6_EXP_55_NUM_880