Phys101	Final-062	Zero Version
Coordinator: Abdelmonem	Thursday, June 07, 2007	Page: 1

Q1.
Fig. 1 shows a three boxes of masses m_{1}, m_{2} and m_{3} hanging from a ceiling. The crossbars are horizontal and have negligible mass and same length L. If $m_{3}=1.0 \mathrm{~kg}$, then m_{1} is equal to:

Fig\#

A) 12 kg
B) 8.0 kg
C) 2.0 kg
D) 4.0 kg
E) 10 kg

Q2.
Fig. 2 shows a uniform beam with a weight of 60.0 N and length of 3.20 m is hinged at its lower end and a horizontal force F of magnitude 50.0 N acts at its upper end. The beam is held vertical by a cable that makes an angle $\theta=30.0^{\circ}$ with the ground and is attached to the beam at a height $h=1.60 \mathrm{~m}$. The tension (T) in the cable is:

Fig\#

A) 115 N
B) 160 N
C) 46 N
D) 80 N
E) 35 N

Q3.
A solid copper sphere has a diameter of 85.5 cm . How much stress must be applied to the sphere to reduce its diameter to 85.0 cm ? The bulk modulus of copper is $1.4 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
A) $2.4 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
B) $1.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
C) $7.0 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
D) $9.5 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
E) $2.8 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$

Q4.

A uniform disk is rolling smoothly down a rough incline starting from rest from a height h as shown in the Fig. 3. Which one of the following statement is correct?

Fig\#

A) Kinetic energy of rolling of the disk at the bottom of the incline is mgh
B) Mechanical energy is not conserved because there is friction
C) Rotational kinetic energy $\left(\frac{1}{2} I_{\text {com }} \omega^{2}\right)$ is equal to the translational kinetic energy $\left(\frac{1}{2} m v_{\text {com }}^{2}\right)$ at the bottom.
D) No change in rotational kinetic energy
E) Work done by static friction force is not zero.

Q5.
A wheel turns through 5.0 rev as it slows down at a constant rate from an initial angular speed of $2.51 \mathrm{rad} / \mathrm{s}$ to a stop. The angular acceleration of the wheel is:
A) $-0.10 \mathrm{rad} / \mathrm{s}^{2}$
B) $+0.10 \mathrm{rad} / \mathrm{s}^{2}$
C) $-0.20 \mathrm{rad} / \mathrm{s}^{2}$
D) $+0.20 \mathrm{rad} / \mathrm{s}^{2}$
E) $-0.50 \mathrm{rad} / \mathrm{s}^{2}$

Q6.
A playground merry-go-round has a radius (R) of 3.0 m and a rotational inertia of $320 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. It is initially spinning at $0.80 \mathrm{rad} / \mathrm{s}$ when a 20 kg child, initially standing at the center, walks from the center to the rim $(r=R)$. When the child reaches the rim the angular velocity of the merry-goround is:
(You can consider the child to be a point mass).
A) $0.51 \mathrm{rad} / \mathrm{s}$
B) $0.73 \mathrm{rad} / \mathrm{s}$
C) $0.80 \mathrm{rad} / \mathrm{s}$
D) $0.89 \mathrm{rad} / \mathrm{s}$
E) $1.1 \mathrm{rad} / \mathrm{s}$

Q7.
Fig. 4 shows an ideal fluid flow in a horizontal tube. The pressure, velocity, and cross sectional area of fluid at point 1 and 2 are $\left(\mathrm{P}_{1}, \mathrm{v}_{1}, \mathrm{~A}_{1}\right)$ and $\left(\mathrm{P}_{2}, \mathrm{v}_{2}, \mathrm{~A}_{2}\right)$ respectively with $\mathrm{A}_{1}>\mathrm{A}_{2}$. Which one of the following statements is correct?

Fig\#
\#:

A) $v_{1}<v_{2} \& P_{1}>P_{2}$
B) $v_{1}=v_{2} \& P_{1}=P_{2}$
C) $\mathrm{v}_{1}<\mathrm{v}_{2} \& \mathrm{P}_{1}<\mathrm{P}_{2}$
D) $v_{1}>v_{2} \& P_{1}>P_{2}$
E) $\mathrm{v}_{1}<\mathrm{v}_{2} \& \mathrm{P}_{1}=\mathrm{P}_{2}$

Q8.

A wooden box has been found to floats in three different fluids of densities: $\rho_{1}($ fluid 1$)=0.9$ $\mathrm{g} / \mathrm{cm}^{3}, \rho_{2}($ fluid 2$)=1.0 \mathrm{~g} / \mathrm{cm}^{3}, \rho_{3}($ fluid 3$)=1.1 \mathrm{~g} / \mathrm{cm}^{3}$. Which one of the following statements is true?
A) the three fluids exert the same buoyant force
B) the buoyant force of fluid 1 is greater than the buoyant forces of the other two fluids

Phys101	Final-062	Zero Version
Coordinator: Abdelmonem	Thursday, June 07, 2007	Page: 4

C) the buoyant force of fluid 3 is greater than the buoyant forces of the other two fluids
D) the object displace the same volume of all three fluids
E) none of these are true

Q9.
A U-tube of constant cross sectional area, open to the atmosphere, is partially filled with Hg $\left(\rho_{\mathrm{Hg}}=13.6 \mathrm{~g} / \mathrm{cm}^{3}\right)$. Water $\left(\rho_{\mathrm{w}}=1.00 \mathrm{~g} / \mathrm{cm}^{3}\right)$ is then poured into both arms. If the equilibrium configuration of the tube is as shown in the Fig. 5 with $h_{3}=1.00 \mathrm{~cm}$, determine the value of h_{1}. (Note that h_{1}, h_{2} and h_{3} are not drawn to scale).

Fig\#

A) 12.6 cm
B) 0 cm
C) 13.6 cm
D) 3.0 cm
E) 2.6 cm

Q10.
The open end of a cylindrical pipe has a radius of 1.5 cm . Water (density $=1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$) flows steadily out of this end at a speed of $7.0 \mathrm{~m} / \mathrm{s}$. The rate at which mass is leaving the pipe is:
A) $4.9 \mathrm{~kg} / \mathrm{s}$
B) $2.5 \mathrm{~kg} / \mathrm{s}$
C) $7.0 \mathrm{~kg} / \mathrm{s}$
D) $48 \mathrm{~kg} / \mathrm{s}$
E) $7.0 \times 10^{3} \mathrm{~kg} / \mathrm{s}$

Q11.
A particle of mass $m=2.0 \mathrm{~kg}$ is attached to a string and swings in a vertical circle of radius $r=$ 0.50 m . What is the tension (T) in the string at the moment the string makes an angle of 60° with the vertical and has a speed of $3.0 \mathrm{~m} / \mathrm{s}$? (See Fig. 6).

Phys101	Final-062	Zero Version
Coordinator: Abdelmonem	Thursday, June 07, 2007	Page: 5

Fig\#

A) 46 N
B) 20 N
C) 9.8 N
D) 15 N
E) 32 N

Q12.
A 40-kg block is dragged along a horizontal surface by a force $F=260 \mathrm{~N}$ applied on the block at an angle of 30° as shown in Fig. 7. The coefficient of kinetic friction is $\mu_{\mathrm{k}}=0.40$ and the block moves at constant acceleration of a. The magnitude of a is:

Fig\#

A) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.0 \mathrm{~m} / \mathrm{s}^{2}$
C) $2.0 \mathrm{~m} / \mathrm{s}^{2}$
D) $4.0 \mathrm{~m} / \mathrm{s}^{2}$
E) $5.0 \mathrm{~m} / \mathrm{s}^{2}$

Q13.

Phys101	Final-062	Zero Version
Coordinator: Abdelmonem	Thursday, June 07, 2007	Page: 6

Only two forces $\left(\vec{F}_{1}\right.$ and $\left.\vec{F}_{2}\right)$ are acting on a particle of mass 3.0 kg that moves with an acceleration of $3.0 \mathrm{~m} / \mathrm{s}^{2}$ in the positive direction of y-axis. If $\vec{F}_{1}=(8.0 \hat{i}) \mathrm{N}$, what is the magnitude of \vec{F}_{2} ?
A) 12 N
B) 1.0 N
C) 17 N
D) 15 N
E) 9.0 N

Q14.

The displacement of a particle oscillating along the x -axis is given as a function of time according to the equation: $x(t)=0.50 \cos \left(\pi t+\frac{\pi}{2}\right)$. The magnitude of the maximum acceleration of the particle is:
A) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
B) impossible to determine
C) zero
D) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
E) $1.8 \mathrm{~m} / \mathrm{s}^{2}$

Q15.
A block of mass 2.0 kg attached to a spring oscillates in simple harmonic motion along the x axis. The limits of its motion are $x=-20 \mathrm{~cm}$ and $x=+20 \mathrm{~cm}$ and it goes from one of these extremes to the other in 0.25 s . The mechanical energy of the block-spring system is:
A) 6.3 J
B) 1.2 J
C) 2.5 J
D) 5.3 J
E) 4.1 J

Q16.
The mechanical energy of a block-spring system executing simple harmonic motion is 8.0 J and the amplitude $x_{\mathrm{m}}=12 \mathrm{~cm}$. When $K=6.0 \mathrm{~J}$, the displacement of the block is:
A) $x=6.0 \mathrm{~cm}$
B) $x=4.0 \mathrm{~cm}$
C) $x=12 \mathrm{~cm}$
D) $x=-3.0 \mathrm{~cm}$

Phys101	Final-062	Zero Version
Coordinator: Abdelmonem	Thursday, June 07,2007	Page: 7

E) $x=0 \mathrm{~cm}$

Q17.
A physical pendulum consists of a uniform solid disk (radius $R=10.0 \mathrm{~cm}$) supported in a vertical plane by a pivot located at a distance $d=5.0 \mathrm{~cm}$ from the center of the disk. The disk is made to oscillate in a simple harmonic motion of period T. Find T.
A) 0.78 s
B) 1.4 s
C) 1.0 s
D) 0.38 s
E) 1.8 s

Q18.
Car A is moving with velocity $(20 \hat{i}) \mathrm{m} / \mathrm{s}$ and car B is traveling with velocity $(30 \hat{j}) \mathrm{m} / \mathrm{s}$. What is the velocity of car A relative to B ?
A) $(20 \hat{i}-30 \hat{j}) \mathrm{m} / \mathrm{s}$
B) $(30 \hat{i}-20 \hat{j}) \mathrm{m} / \mathrm{s} \mathrm{s}$
C) $(20 \hat{i}+30 \hat{j}) \mathrm{m} / \mathrm{s}$
D) $(-20 \hat{i}+30 \hat{j}) \mathrm{m} / \mathrm{s}$
E) $(-20 \hat{i}-30 \hat{j}) \mathrm{m} / \mathrm{s}$

Q19.

$\vec{A}=\hat{i}+\hat{j}, \vec{B}=\hat{i}-\hat{j}$ and $\vec{C}=2 \hat{k}$. What is the value of $(\vec{A} \times \vec{B}) \cdot \vec{C}$:
A) -4
B) 0
C) 1
D) $\hat{i}+2 \hat{k}$
E) \hat{k}

Q20.
A particle leaves the origin with an initial velocity, $\vec{v}_{\mathrm{o}}=(4.0 \hat{i}) \mathrm{m} / \mathrm{s}$ and a constant acceleration $\vec{a}=(-2.0 \hat{i}-0.50 \hat{j}) \mathrm{m} / \mathrm{s}$. It reaches its maximum x-coordinate at:

Phys101	Final-062	Zero Version
Coordinator: Abdelmonem	Thursday, June 07,2007	Page: 8

A) 2.0 s
B) 1.0 s
C) 3.0 s
D) 4.0 s
E) 5.0 s

Q21.
A large cannon is fired from the ground at an angle of 45° above the horizontal. The initial speed is $980 \mathrm{~m} / \mathrm{s}$. Neglecting air resistance, the projectile will travel a horizontal distance $=X$ before striking the ground. Find X.
A) 98 km
B) 25 km
C) 85 km
D) 49 km
E) 170 km

Q22.

An object A has mass m and is moving with velocity $15 \mathrm{~m} / \mathrm{s}$. It then collides and sticks with a stationary object B of mass 2 m . The velocity of the composite object (mass 3 m) after collision is:
A) $5.0 \mathrm{~m} / \mathrm{s}$
B) $10 \mathrm{~m} / \mathrm{s}$
C) $15 \mathrm{~m} / \mathrm{s}$
D) $-10 \mathrm{~m} / \mathrm{s}$
E) $7.5 \mathrm{~m} / \mathrm{s}$

Q23.
A 2.0 kg cart, traveling on a horizontal air track with a speed of $3.0 \mathrm{~m} / \mathrm{s}$, collides with a stationary 4.0 kg cart. The carts stick together. The impulse exerted by one cart on the other has a magnitude of:
A) $4.0 \mathrm{~N} \cdot \mathrm{~s}$
B) 0
C) $6.0 \mathrm{~N} \cdot \mathrm{~s}$
D) $9.0 \mathrm{~N} \cdot \mathrm{~s}$
E) $1.0 \mathrm{~N} \cdot \mathrm{~s}$

Q24.

Phys101	Final-062	Zero Version
Coordinator: Abdelmonem	Thursday, June 07, 2007	Page: 9

A box of mass $=10.0 \mathrm{~kg}$ is placed at the top of a 30.0° inclined plane. The box starts from rest and slides down the incline. The frictional force on the box during the slide is 25.0 N . After traveling 12.0 m , its kinetic energy is:
A) 288 J
B) 144 J
C) 980 J
D) 490 J
E) 0 J

Q25.
A force of 120 N stretches a certain spring a distance of 0.10 m . What is the elastic potential energy of the spring when it is compressed 0.10 m ?
A) 6.0 J
B) 2.0 J
C) 4.0 J
D) 8.0 J
E) 10 J

Q26.

A 2.0 kg box has an initial velocity of $10 \mathrm{~m} / \mathrm{s}$ in the positive x-direction. A net force of 5.0 N caused the box to move with a velocity of $10 \mathrm{~m} / \mathrm{s}$ in the positive y-direction. The work done on the box by this force is:
A) 0
B) 10 J
C) 50 J
D) 25 J
E) 5 J

Q27.
Eight balls of different masses are placed along a circle as shown in Fig. 8 The net force on a ninth ball of mass m in the center of the circle is in the direction of:

Fig\#

Phys101	Final-062	Zero Version
Coordinator: Abdelmonem	Thursday, June 07,2007	Page: 10

N

S
A) NE
B) SE
C) E
D) N
E) W

Q28.
The escape velocity of an object of mass 200 kg on a certain planet is $60 \mathrm{~km} / \mathrm{s}$. When the object is on the surface of the planet, the gravitational potential energy of the object-planet system is:
A) $-3.6 \times 10^{11} \mathrm{~J}$
B) $+3.6 \times 10^{11} \mathrm{~J}$
C) $-3.6 \times 10^{5} \mathrm{~J}$
D) $+3.6 \times 10^{5} \mathrm{~J}$
E) 0 J

Q29.
A planet has two moons of masses $\mathrm{m}_{1}=m$ and $\mathrm{m}_{2}=2 m$ and orbit radii $\mathrm{r}_{1}=r$ and $\mathrm{r}_{2}=2 r$, respectively. The ratio of their periods T_{1} / T_{2} is:
A) 0.35
B) 0.13
C) 1
D) 4
E) 0.71

Q30.
A satellite in a circular orbit around Earth has a kinetic energy of $1.0 \times 10^{8} \mathrm{~J}$. The mechanical energy of the stellite-Earth system is:

Phys101	Final-062	Zero Version
Coordinator: Abdelmonem	Thursday, June 07, 2007	Page: 11

A) $-1.0 \times 10^{8} \mathrm{~J}$
B) $1.0 \times 10^{8} \mathrm{~J}$
C) $-2.0 \times 10^{8} \mathrm{~J}$
D) $+2.0 \times 10^{8} \mathrm{~J}$
E) 0 J

