Q1 Q0 A simple pendulum of mass $m=20 \mathrm{~kg}$ and length L is pulled
Q0 back and held with a horizontal force of 100 N (see Fig 1).
Q0 The tension in the string at this equilibrium position is:
Q0
A1 220 N
A2 60 N
A3 120 N
A4 190 N
A5 260 N
Q0
Q2 Q0 A horizontal aluminum rod (shear modulus $=2.5 * 10 * * 10 \mathrm{~N} / \mathrm{m}^{* *} 2$)
Q0 projects L=5.0 cm from the wall (see Fig 6). The cross sectional
Q0 area of the $\operatorname{rod} A=1.0^{*} 10^{* *}(-5) m^{* *} 2$. A shearing force of 500 N
Q0 is applied at the end of the rod. Find the vertical deflection
Q0 delta(x) of the end of the rod.
Q0
A1 1.0 *10** (-4) m
A2 2.0 *10** (-4) m
A3 3.0 *10** (-4) m
A4 4.0 *10** (-4) m
A5 5.0 *10** (-4) m
Q0
Q3
A uniform rod $A B$ is 1.2 m long and weighs 16 N . It is suspended by strings $A C$ and $B D$ as shown in Fig 2. A block P weighing 96 N is attached at point $E, 0.30 \mathrm{~m}$ from A. The tension in the string BD is:
Q0
A1
32 N
24 N
64 N 48 N 112 N
Q0
Q4 Q0 Four point masses are at the corners of a square whose side is
020 cm long (see Fig 3). What is the magnitude of the net
Q0 gravitational force on a point mass m5 $=2.5 \mathrm{~kg}$ located at the
Q0 center of the square?
Q0
A1 3.3*10** (-8) N
A2 1.1*10** (-8) N
A3 2.2*10** (-8) N
A4 $4.4 * 10^{* *}(-8) \mathrm{N}$
A5
Q0
Q5 Q0 An object is fired vertically upward from the surface of
Q0 the Earth (Radius $=R$) with an initial speed of (Vesc)/2,
Q0 where (Vesc = escape speed). Neglecting air resistance,
Q0 how far above the surface of Earth will it reach?
Q0
A1 R/3
A2 R/2
A3 3 *R
A4 2 *R
A5 R
Q0

Q6 Q0 What is the escape speed on a spherical planet whose radius
Q0 is 3200 km and whose gravitational acceleration at the surface
Q0 is $4.00 \mathrm{~m} / \mathrm{s}^{* *} 2$?
Q0
A1 $5.06 \mathrm{~km} / \mathrm{s}$
A2 $3.58 \mathrm{~km} / \mathrm{s}$
A3 $11.2 \mathrm{~km} / \mathrm{s}$
A4 $9.80 \mathrm{~km} / \mathrm{s}$
A5 $4.00 \mathrm{~km} / \mathrm{s}$
Q0
Q7 Q0 A planet requires 300 (Earth) days to complete its circular
Q0 orbit about its sun (mass $M=6.0^{*} 10^{* *} 30 \mathrm{~kg}$).
Q0 The orbital speed of the planet is:
Q0
A1 4.6*10**4 m/s
A2 $5.4 * 10^{* *} 4 \mathrm{~m} / \mathrm{s}$
A3 $6.5^{*} 10 * * 4 \mathrm{~m} / \mathrm{s}$
A4 $3.5 * 10^{* *} 4 \mathrm{~m} / \mathrm{s}$
A5 7.5*10**4 m/s
Q0
Q8 Q0 A water hose of 1.00 cm radius is used to fill a container of Q0 volume 20.0*10**3 cm**3. It takes 60 s to fill the container. Q0 What is the speed at which the water leaves the hose?
Q0
A1 $106 \mathrm{~cm} / \mathrm{s}$
A2 $201 \mathrm{~cm} / \mathrm{s}$
A3 $154 \mathrm{~cm} / \mathrm{s}$
A4 $189 \mathrm{~cm} / \mathrm{s}$
A5 $255 \mathrm{~cm} / \mathrm{s}$
Q0
Q9 Q0 Water enters a house through a pipe with a velocity of $4.0 \mathrm{~m} / \mathrm{s}$
Q0 at a pressure of $4 * 10 * * 5 \mathrm{~Pa}$. The water in a narrower pipe
Q0 at the second floor bathroom 5.0 m above has a velocity of
Q0 $16 \mathrm{~m} / \mathrm{s}$. What is the pressure of water in the bathroom?
Q0 (Density of water $=1.0 * 10^{* *} 3 \mathrm{~kg} / \mathrm{m} * * 3$)
Q0
A1 2.3*10**5 Pa
A2 1.5*10**5 Pa
A3 $5.5 * 10 * * 5 \mathrm{~Pa}$
A4 4.5*10**5 Pa
A5 3.0*10**5 Pa
Q0
Q10Q0 A block of metal has mass of 0.50 kg and density of 8.0 * 10 ** 3
Q0 kg/m**3. It is suspended from a string and completely
Q0 submerged in water. Find the tension in the string.
Q0 (Density of water $=1.0 * 10^{* *} 3 \mathrm{~kg} / \mathrm{m}^{* *} 3$)
Q0
A1 4.3 N
A2 5.0 N
A3 0.60 N
A4 4.9 N
A5 5.5 N
Q0
Q11Q0 A piston of radius $R 1=5.0 \mathrm{~cm}$ is used in a hydraulic press to
Q0 exert a force F1 on the enclosed liquid to raise a car of weight
Q0 F2=13,500 N (see Fig 4). If the radius of the larger piston is
0 R2 = 15 cm , Find F1.
Q0
A1 1.5*10**3 N
A2 $2.5 * 10 * * 3 \mathrm{~N}$

```
    A3 3.5*10**3 N
    A4 4.0*10**3 N
    A5 2.0*10**3 N
    Q0
Q12Q0 A block of mass 0.50 kg is attached to a horizontal spring
    Q0 (k = 160 N/m). The block is pulled a distance 20 cm from its
    Q0 unstretched position on a frictionless horizontal surface. What
    Q0 is the magnitude of its maximum acceleration?
    Q0
    A1 }64\textrm{m}/\textrm{s}**
    A2 }0.80\textrm{m}/\mp@subsup{\textrm{s}}{}{**}
    A3 0.28 m/s**2
    A4 }72\textrm{m}/\textrm{s}**
    A5 1.9 m/s**2
    Q0
Q13Q0 A simple pendulum of length = L1 on Earth oscillates with
    Q0 with a period = T. Another pendulum of length = L2 on the Moon
    Q0 oscillates with a period = 2*T. Find the ratio L1/L2.
    Q0 (Take g on Moon = (1/6)*g on Earth.)
    Q0
    A1 3/2
    A2 1/2
    A3 1/4
    A4 2/3
    A5
    Q0
Q14Q0 A block-spring system has an amplitude of 4.0 cm and a maximum
    Q0 speed of 0.60 m/s. What is the frequency of oscillation?
    Q0
    A1 2.39 Hz
    A2 120 Hz
    A3 60 Hz
    A4 240 Hz
    A5 0.50 Hz
    Q0
Q15Q0 A particle oscillates according to the equation:
    Q0 x = 0.20 * cos(pi*t), where pi = 3.14.
    Q0 What is the period of the motion?
    Q0
    A1
Q16Q0 A ball (mass=m) is dropped from a bridge that is 40 m high
    Q0 (see Fig 9). It falls directly into a boat, moving with
    Q0 constant velocity, that is 12 m from the point of impact
    Q0
    Q0
    A1
    A2
    A3
    A4
    A5
    Q0
Q17Q0 If A = 3 i - 2 j and B = 2 j what is (A x B).B ?
    Q0
    A1 0
    A2 12
```

```
    A3 4
    A4 -4
    A5 6 i - 4 j
    Q0
Q18Q0 A player kicks a ball with a velocity of 50.0 m/s at an angle
    Q0 of 30 degrees above the horizontal. Find the time the ball takes
    Q0 to reach the maximum height.
    Q0
    A1 2.55 s
    A2 1.35 s
    A3 2.00 s
    A4 1.00 s
    A5 5.10 s
    Q0
Q19Q0 A man of mass 70.0 kg stands on a scale in an elevator. What
    Q0 does the scale read when the elevator accelerates downward at
    Q0 1.20 m/s**2?
    Q0
    A1 602 N
    770 N
    686 N
    84 N
    980 N
    Q0
Q20Q0 A box slides down a 30 degree incline. If the coefficient of
    Q0 kinetic friction between the box and the surface of the incline
    Q0 is 0.30. What is the acceleration of the box?
    Q0
    A1
    6.96 m/s**2
    A3 }4.90\textrm{m}/\textrm{s}**
    A4 0 m/s**2
    A5 }9.80\textrm{m}/\textrm{s}**
    Q0
Q21Q0 A 4.0 kg cart starts up an incline with a speed of 3.0 m/s and
    Q0 comes to rest 2.0 m up the incline. The total work done on the
    Q0 cart is:
    Q0
    A1 -18 J
    A2 8.0 J
    A3 12 J
    A4 -4.0 J
    A5 0 J
    Q0
Q22Q0 A force of 100 N holds an ideal spring having 200 N/m spring
    constant in compression. The potential energy stored in the
    spring is:
    Q0
    A1 25 J
    2 0.5 J
    3 5.0 J
    10 J
    200 J
    Q0
Q23Q0 A 6.0 kg block is released from rest 80 m above the ground. When
    Q0 it has fallen 60 m its kinetic energy is:
    Q0
    A1 3500 J
    A2 4800 J
    A3 1200 J
```

4120 J
A5 60 J
Q0
Q24Q0 A ball is thrown into the air. As it rises, there is an increase Q0 in its:
Q0
A1 potential energy
A2 speed
kinetic energy
acceleration
momentum
Q0
Q25Q0 A 10 g bullet is fired horizontally into a 2.0 kg pendulum block
Q0 at rest. The bullet remains embedded in the block and the block
Q0 with the bullet inside rises to a height of 10 cm . What is the
Q0 initial speed (v) of the bullet? (See Fig 5)
Q0
A1 $281 \mathrm{~m} / \mathrm{s}$
A2 $302 \mathrm{~m} / \mathrm{s}$
$182 \mathrm{~m} / \mathrm{s}$
$102 \mathrm{~m} / \mathrm{s}$
252 m/s
Q0
Q26Q0 A 2.0 kg and 3.0 kg masses are moving along the x -axis. At a
Q0 particular instant, the 2.0 kg has a velocity of $3.0 \mathrm{~m} / \mathrm{s}$ and
Q0 the 3.0 kg has a velocity of $-1.0 \mathrm{~m} / \mathrm{s}$. What is the velocity of
Q0 their center of mass?
Q0
A1
A2 $1.8 \mathrm{~m} / \mathrm{s}$
A2 $1.8 \mathrm{~m} / \mathrm{s}$
A3 $-0.60 \mathrm{~m} / \mathrm{s}$
A4 $-1.8 \mathrm{~m} / \mathrm{s}$
A5 $0.00 \mathrm{~m} / \mathrm{s}$
Q0
Q27Q0 A cylinder is 0.10 m in radius and its rotational inertia, about
Q0 the axis through 0 , is $0.020 \mathrm{kg*m**}$. A string is wound around
Q0 the cylinder and pulled with a force of 1.0 N . The angular
Q0 acceleration of the cylinder is (see Fig 7):
Q0
A1 $5.0 \mathrm{rad} / \mathrm{s}^{* *} 2$
A2 $10 \mathrm{rad} / \mathrm{s}^{* *} 2$
A3 $15 \mathrm{rad} / \mathrm{s} * * 2$
A4 $20 \mathrm{rad} / \mathrm{s} * * 2$
A5 $2.5 \mathrm{rad} / \mathrm{s}^{* *} 2$
Q0
Q28Q0 A wheel initially has an angular velocity of 18 rad/s but it is
Q0 slowing at a rate of $2.0 \mathrm{rad} / \mathrm{s}^{* *} 2$. By the time it stops it will
Q0 have turned through:
Q0
A1 13 rev
A2 26 rev
A3 39 rev
A4 52 rev
A5 65 rev
Q0
Q29Q0 Three particles, of mass of $m, 2 m$ and $3 m$, are fastened
Q0 to each other and to a rotation axis at 0 by three massless
Q0 rods, of lengths $a, 2 a$ and $3 a$ respectively (see Fig 8).
Q0 The combination rotates around the rotational axis with
Q0 angular velocity of w . What is the total angular momentum

```
    Q0 of the three particles relative to point 0?
    Q0
    A1 127 m*w*a**2
    A2 }97\mathrm{ m*W*a**2
    A3 117 m*W*a**2
    A4 137 m* w*a**2
    A5 147 m*W*a**2
    Q0
Q30Q0 When a man on a frictionless rotating seat extends his arms
    Q0 horizontally, his rotational kinetic energy:
    Q0
    A1 must decrease
    A2 must increase
    A3 must remain the same
    A4 may increase or decrease depending on his initial
    A4 angular velocity
    A5 may increase or decrease depending on his gravitational
    A5 potential energy
```

