Q1 Q0 The system in Fig 2 is in equilibrium. A mass (M) of 5.0 kg
13 Q0 hangs from the end of the uniform beam of mass $=10.0 \mathrm{~kg}$.
Q0 The tension in the cable is:
Q0
A1 190 N
A2 210 N
A3 69 N
A4 $51 \quad \mathrm{~N}$
A5 98 N
Q0
Q2 Q0 Two scales are 2.0 m apart. A uniform 40 kg beam of the same
13 Q0 length is placed on top of them (see Fig 3). A 10 kg block is
Q0 placed on the beam after which the right scale reads 22 kg and
Q0 the left scale reads 28 kg . How far from the right scale is the
QO center of gravity of the block located?
Q0
A1 1.6 m
A2 0.2 m
A3 1.3 m
A4 1.4 m
A5 0.8 m
Q0
Q3 Q0 A 500 kg mass is hung from the ceiling with a steel wire. The
13 Q0 wire has a length $=45.0 \mathrm{~cm}$, radius $=4.00 \mathrm{~mm}$ and has negligible
Q0 mass. Calculate the change in the length of the wire.
Q0 (Youngs modulus of steel $\mathrm{E}=2.00 * 10 * * 11 \mathrm{~N} / \mathrm{m} * * 2$)
Q0
A1 $\quad 0.22 \mathrm{~mm}$
A2 $\quad 0.15 \mathrm{~mm}$
A3 $\quad 0.75 \mathrm{~mm}$
A4 $\quad 0.50 \mathrm{~mm}$
A5 $\quad 0.05 \mathrm{~mm}$
Q0
Q4 20 A space ship is going from the Earth to the Moon along the line
14 Q0 joining their centers. At what distance from the center of the
Q0 Earth will the net gravitational force on the space ship be zero?
Q0 Assume that $M e=81 \mathrm{Mm}$, where Me is the mass of the Earth
$Q 0$ and $M m$ is the mass of the Moon. (The distance from the center of
Q0 the Earth to the center of the Moon is $3.8 * 10 * * 5 \mathrm{~km}$).
Q0
A1 3.4*10**5 km
A2 $3.8 * 10 * * 5 \mathrm{~km}$
A3 3.0*10**5 km
A4 $4.3 * 10 * * 5 \mathrm{~km}$
A5 $1.9 * 10 * * 5 \mathrm{~km}$
Q0
Q5 Q0 A satellite circles the Earth at an altitude equal to 3 times
14 Q0 the radius of Earth. Find the gravitational acceleration due QO to Earth at the satellite.
Q0 (g on the surface of Earth is $9.8 \mathrm{~m} / \mathrm{s} * * 2$)
Q0
A1 $0.61 \mathrm{~m} / \mathrm{s}^{* *} 2$
A2 $0.22 \mathrm{~m} / \mathrm{s} * * 2$
A3 $9.8 \mathrm{~m} / \mathrm{s} * * 2$
A4 $3.3 \mathrm{~m} / \mathrm{s} * * 2$
A5 $0.0 \mathrm{~m} / \mathrm{s}^{* *} 2$
Q0
Q6 Q0 Two moons orbit a planet in circular orbits. Moon (A) has

14

 Q0 orbital radius R and moon (B) has orbital radius 4R. Moon A takes Q0 20 days to complete its orbit. How long does it take moon (B) to QO complete its orbit?Q0
A1 160 days
A2 20 days
A3 80 days
A4 320 days
A5 100 days
Q0
Q7 Q0 What is the escape speed from the surface of a planet whose
14 Q0 radius is 5000 km , if the gravitational acceleration on its surface is $4.0 \mathrm{~m} / \mathrm{s} * * 2$?
Q 0
A1 $6.3 \mathrm{~km} / \mathrm{s}$
A2 $2.8 \mathrm{~km} / \mathrm{s}$
A3 $2.0 \mathrm{~km} / \mathrm{s}$
A4 $4.0 \mathrm{~km} / \mathrm{s}$
A5 $8.0 \mathrm{~km} / \mathrm{s}$
Q0
Q8 Q0 Two different solid metal pieces experience the same buoyant
15 Q0 force when completely submerged in the same liquid. Which of the Q0 following statements is CORRECT?
Q0
A1 Their volumes are equal.
A2 Their densities are equal.
A3 Their masses are equal.
A4 They displace different volumes of the liquid.
5 All of the other answers are wrong.
Q0
Q9 Q 0 How deep into a lake would you have to dive so that the increase
15 Q0 in pressure you experience is one atmosphere?
Q0 (The density of water $=10 * * 3 \mathrm{~kg} / \mathrm{m} * * 3$).
Q0 (1 atmosphere $=1.01 * 10 * * 5 \mathrm{~N} / \mathrm{m} * * 2$)
Q0
A1 10.3 m
A2 9.8 m
A3 4.9 m
A4 2.01 m
A5 100 m
Q0
Q10Q0 A pipe 16 cm in diameter is used to fill a tank of volume
15 Q0 5000 liters in 5 minutes. What is the speed at which the water
Q0 leaves the pipe? (1 liter $=10 * *-3 \mathrm{m**}$)
Q0
A1 $50 \mathrm{~m} / \mathrm{min}$
A2 $40 \mathrm{~m} / \mathrm{min}$
A3 $200 \mathrm{~m} / \mathrm{min}$
A4 $25 \mathrm{~m} / \mathrm{min}$
$5100 \mathrm{~m} / \mathrm{min}$
Q0
Q11Q0 Consider a large, closed, cylindrical tank with oil inside it.
15 Q0 There is a small hole at a height of 1 m from the bottom of the
QO tank. The air above the oil is maintained at a pressure
Q 01.5 x $10 * * 5 \mathrm{~Pa}$ (see Fig 7). Find the speed at which oil leaves
Q0 the hole, when the oil level is 20 m above the bottom of the
Q0 tank. (The density of oil is $850 \mathrm{~kg} / \mathrm{m} * * 3$).
Q0
A1 $22 \mathrm{~m} / \mathrm{s}$
A2 $11 \mathrm{~m} / \mathrm{s}$
$344 \mathrm{~m} / \mathrm{s}$
A4 $33 \mathrm{~m} / \mathrm{s}$
A5 $55 \mathrm{~m} / \mathrm{s}$
Q0
Q12Q0 A 5.0 kg mass stretches a spring by 10 cm when the mass is
16 Q0 attached to the spring. The mass is then displaced downward
Q 0 an additional 5.0 cm and released. Its position (y) in m from
QO its equilibrium position as a function of time (t) is:
Q0
$1 y=0.05 \cos (10 * t)$
$y=0.10 \cos (10 * t)$
$y=0.10 \sin (10$ * $t)$
$y=0.10 \cos (5 * t)$
$y=0.05 \sin (5 * t)$
Q0
Q13Q0 A particle ($m=0.2 \mathrm{~kg}$) is attached to a spring. The motion of
16 Q0 the particle is described by $x=0.10 \cos (10 * t+P I / 3)$
where x is m and t is in s. What is the mechanical energy of the particle?
0.1 J
0.8 J
0.6 J
1.0 J

10 J
Q0
Q14Q0 The frequency of small oscillations of a simple pendulum of
16 Q0 length (L) on the surface of Earth is (f). What will be its
frequency on the surface of the Moon if we increase its length
to become (2L)? (Take: g(Moon) $=0.17 \mathrm{~g}$ (Earth))
0.29 * f
3.4 *
f
$2 *$ f
0.085 * f

Q0
Q15Q0 A mass m = 2 kg is attached to a spring having a force constant
$16 \mathrm{Q} 0 \mathrm{k}=300 \mathrm{~N} / \mathrm{m}$. The mass is displaced from its equilibrium position and released. Its period of oscillation (in s) is approximately
0.5

10
2.0
0.01
0.08

Q0
Q16Q0 The average density of blood is $1.06 \mathrm{x} 10 * * 3 \mathrm{~kg} / \mathrm{m} * * 3$. If you
1 Q 0 donate one pint of blood, what is the mass of the blood you
Q0 have donated, in grams?
Q0 (1 pint $=1 / 2$ Liter, 1 Liter $=1000 \mathrm{cm**} 3$)
Q0
A1 530
A2 5.30 x $10 * * 3$
A3 0.530
A4 $5.30 \times 10 * * 5$
A5 1060
Q0
Q17Q0 A car travels along a straight road with a speed of v1=15 m/s

```
    2 Q
    Q0
    Q0
    Q0
    Q0
    A1
    A2
    A3
    A4
    A5
    Q0
Q18Q0 Which of the following is a unit vector?
    3 Q0
        A1 j x i
        A2 (1/2) (i - j)
        A3 (1/2) (i + j)
        A4 (1/sqrt(2)) (i + j + k)
        A5 0.3 j + 0.4 k
        Q0
Q19Q0 An object (A) is shot horizontally with a speed Vo from the top
Q QO of a building of height (h). It takes a time tA for it to reach
    the ground. Another object (B) is dropped from the same height
    and reaches the ground in time tB. Which of the following
    statements is CORRECT?
    tA=tB
    tA>tB
    tA < tB
    Both objects will hit the ground with the same speed.
    The acceleration of object (A) is zero.
    Two forces F1 = 20 N and F2 = 15 N, act on a block of mass
5 Q0 5.0 kg as shown in Fig 4. Find the magnitude of the
    acceleration of the block.
    6.1 m/s**2
    5.5 m/s**2
    2.6 m/s**2
    1.3 m/s**2
    8.1 m/s**2
    Q0
Q21Q0 A box slides down an inclined plane at constant velocity.
6 Q0 Which of the following statements is CORRECT?
Q0
    A1 A frictional force must be acting on it.
    A net force is acting on it.
    Its acceleration is half the acceleration of gravity.
    Gravity is not acting on it.
    Its potential energy is constant.
    Fig 1 shows a force Fx, directed along the x-axis, acting on
    a particle. The particle begins from rest at x = 0. What is
    particle's position when it has the greatest speed?
        10 m
        5 m
        15 m
        m
        2 m
    Q0
Q23Q0 A particle moves under the influence of a single conservative
```

ch8Q0 force. At point (A) the potential energy associated with the
Q0 conservative force is +40 J . As the particle moves from (A) to
Q0 (B), the force does +25 J of work on the particle. What is the
Q0 value of the potential energy at point B?
Q0
A1 +15 J
A2 +65 J
A3 +35 J
A $4+45 \mathrm{~J}$
A5 +40 J
Q0
Q24Q0 A 5.0 kg block starts up a 30 degrees incline
8 Q 0 with 150 J of kinetic energy. How far will it
0 slide up the incline if the coefficient of kinetic
QO friction between the block and the incline is 0.30 ?
Q0
A1 4.0 m
A2 3.5 m
A3 7.0 m
A4 8.2 m
52.4 m

Q0
Q25Q0
Block (A) of mass 0.2 kg , travelling on a frictionless
9 Q horizontal plane at $3.0 \mathrm{~m} / \mathrm{s}$, hits block (B) of mass 0.4 kg which
$Q 0$ is initially at rest. After the collision the center of mass of
Q0 the two blocks has a speed of:
Q0
A1 $1.0 \mathrm{~m} / \mathrm{s}$
A2 $2.0 \mathrm{~m} / \mathrm{s}$
A3 $3.0 \mathrm{~m} / \mathrm{s}$
A4 $0 \mathrm{~m} / \mathrm{s}$
A5 $4.0 \mathrm{~m} / \mathrm{s}$
Q2620 A 1500 kg car tavelling east with a speed of $25 \mathrm{~m} / \mathrm{s}$ collides
10 Q0 with a 2500 kg van traveling north with a speed of $20 \mathrm{~m} / \mathrm{s}$ at
an intersection. The two cars stick together after the collision
and move in the direction shown in Fig 6. What is the speed of the two cars after the collision?
$15.6 \mathrm{~m} / \mathrm{s}$
$20.8 \mathrm{~m} / \mathrm{s}$
$17.7 \mathrm{~m} / \mathrm{s}$
$18.2 \mathrm{~m} / \mathrm{s}$
$25.1 \mathrm{~m} / \mathrm{s}$
Q0
Q27Q0 A certain force accelerates a 5 kg object from a velocity of
$10 \mathrm{Q} 0(2 i+4 j) \mathrm{m} / \mathrm{s}$ to a velocity $(-2 i+4 j) \mathrm{m} / \mathrm{s}$ in 2 s . Find the average Q force acting on the object during this time interval.
Q0
A1 (-10 i) N
A2 (10 j) N
A3 (-20 i) N
A4 (20 j) N
A5 zero
Q0
Q28Q0 Increasing the angular speed of a rotating body will NOT cause
11 Q0 an increase in:
Q0
A1 the rotatioal inertia
A2 angular momentum
A3 linear speed

```
    A4 rotational kinetic energy
    A5 translational kinetic energy
    Q0
Q29Q0 A merry-go-round, of radius R=2.0 m and rotational inertia
12 Q0 I = 250 kg.m**2, is rotating at 19 rev/min about its axle.
    QO A 25 kg boy jumps onto the edge of the merry-go-round. What is
    QO the new angular speed of the merry-go-round?
    Q0
    A1 13.6 rev/min
    2 26.6 rev/min
    A3 19.0 rev/min
    A4 11.2 rev/min
    A5 9.51 rev/min
    Q0
Q30Q0 A wheel of radius 0.5 m rolls without slipping on a
12 Q0 horizontal surface as shown in Fig 5. Starting from rest, the
    Q0 wheel moves with constant angular acceleration of 6.0 rad/s**2.
    Q0 The distance traveled by the center of the wheel from t=0
    QO to t=3.0 s is:
    Q0
    A1 13.5 m
    A2 18.1 m
    A3 27.4 m
    A4 0 m
    A5 }9.8\textrm{m
```

