```
PHYSICS 101 -FINAL EXAM - 022, KFUPM - PHYSICS
```

Q1 Q0 In landing, a jet plane decelerates uniformly and comes to a
2 Q0 stop in 30 s , covering a distance of 1500 m along the runway.
QO What was the jet's landing speed when it first touched the
Q0 runway?
Q0
A1 $100 \mathrm{~m} / \mathrm{s}$
A2 $39 \mathrm{~m} / \mathrm{s}$
A3 $21 \mathrm{~m} / \mathrm{s}$
A4 $170 \mathrm{~m} / \mathrm{s}$
A5 $19 \mathrm{~m} / \mathrm{s}$
Q0
Q2 Q0 A projectile is fired with an initial velocity of $49 \mathrm{~m} / \mathrm{s}$ at an
4 QO angle of 30 degrees above the horizontal. If air resistance is
Q0 negligible, how much time elapses before the projectile reaches
QO its maximum height?
Q0
A1 2.5 s
A2 6.4 s
A3 5.0 s
A4 3.2 s
A5 4.5 s
Q0
Q3 Q0 Earth has a mass of $5.98 \times 10 * * 24 \mathrm{~kg}$. The average mass of the
1 Q0 atoms that make up Earth is 40 u (1 u (atomic mass units)
Q0 $=1.66 \times 10 * *-27 \mathrm{~kg})$. How many atoms are there in Earth?
Q0
A1 $9.0 \times 10 * * 49$
A2 $1.5 \times 10 * * 50$
A3 $3.6 \times 10 * * 51$
A4 $9.9 \times 10 * * 50$
A5 6.6 x 10**49
Q0
Q4 20 The angle the vector $2.50 j+4.33 \mathrm{k}$ makes with the y axis is:
3 Q0
A1 60 degrees
230 degrees
A3 0 degrees
A4 90 degrees
A5 45 degrees
Q0
Q5 Q0 A crane lifts a 3900 kg shipping container through a vertical
7 Q0 height of 4.5 m in 8.0 s . What is the average power that the
crane motor must supply? Assume the crane to be moving with
constant velocity and ignore friction.
Q 0
A1 2.1 x 10**4 W
A2 $7.7 \times 10 * * 4 \mathrm{~W}$
A3 $2.7 \times 10 * * 3 \mathrm{~W}$
A4 $1.7 \times 10 * * 3 \mathrm{~W}$
A5 5.7×10 **5 W
Q0
Q6 Q0 A student applies a horizontal 20 N force to move a crate at a
7 Q0 constant velocity of $4.0 \mathrm{~m} / \mathrm{s}$ across a rough floor. How much net
work is done on the crate in 6.0 s?
Q0
A1 0 J
A2 480 J


```
80 J
120 J
240 J
```

Q0
Q7 Q0 A block of mass m sliding down a rough incline (coefficient of
8 QO kinetic friction u) at constant speed is initially at a height
$Q 0 \mathrm{~h}$ as shown in Fig. 1. What is the increase in thermal energy
Q0 of the block-incline system when the block reaches the bottom?
Q0
A1 mgh
mgh/u
umgh/sin(theta)
mgh cos(theta)
0
Q0
Q8 QO Calculate the rotational inertia of a 0.56 kg meter stick
11 Q0 about an axis perpendicular to the stick and located at
QO the 80 cm mark. (Treat the stick as a thin rod).
Q0
A1 9.7 x 10**-2 kg.m**2
$4.7 \mathrm{x} 10 * *-2 \mathrm{~kg} \cdot \mathrm{~m} * * 2$
$6.5 \mathrm{x} 10 * *-2 \mathrm{~kg} \cdot \mathrm{~m} * * 2$
3.8 x 10**-2 kg.m**2
$1.7 \mathrm{x} 10 * *-2 \mathrm{~kg} . \mathrm{m} * * 2$
Q0
Q9 Q0 A 1.0 m massless rod with a mass $\mathrm{m} 1=100 \mathrm{~g}$ at the lower end is
12 Q0 pivoted at 0 . The rod is at rest when a mass $\mathrm{m} 2 \mathrm{l}=100 \mathrm{~g}$ moving
with velocity Vo strikes the top end and stick to it (see
Fig.2). If the angular velocity of the system just after this
collision is $32 \mathrm{rad} / \mathrm{s}$, find Vo.
$32 \mathrm{~m} / \mathrm{s}$
$15 \mathrm{~m} / \mathrm{s}$
$18 \mathrm{~m} / \mathrm{s}$
$24 \mathrm{~m} / \mathrm{s}$
$10 \mathrm{~m} / \mathrm{s}$
Q0
Q10Q0 A uniform solid sphere is rolling smoothly up a ramp that is
12 Q0 inclined at 10 degrees. What is the acceleration of its center
of mass?
$1.2 \mathrm{~m} / \mathrm{s} * * 2$ down the ramp
$2.5 \mathrm{~m} / \mathrm{s}^{* *} 2$ up the ramp
0
$3.5 \mathrm{~m} / \mathrm{s} * * 2$ up the ramp
$3.5 \mathrm{~m} / \mathrm{s} * * 2$ down the ramp
Q0
Q1100 A particle of mass M moving with Vo=(5 i) m/s explodes into
9 Q0 three equal mass particles. The first particle moves with V1
$0=(3 i) \mathrm{m} / \mathrm{s}$, and the second particle moves with $\mathrm{V} 2=\binom{3}{j} \mathrm{~m} / \mathrm{s}$.
0 Find the velocity of the third particle.
Q0
A1 (12 i - 3 j$) \mathrm{m} / \mathrm{s}$
A2 $(3 \mathrm{i}+3 \mathrm{j}) \mathrm{m} / \mathrm{s}$
A3 (-5 i $+j$ j) m/s
A4 (10 i - 2 j$) \mathrm{m} / \mathrm{s}$
A5 (-9 i - 3 j$) \mathrm{m} / \mathrm{s}$
Q0
Q12Q0 A 3.0-kg ball with an initial velocity of (3i+2j) m/s collides
10 QO with a wall and rebounds with a velocity of (-3i+2j) m/s. what

```
    QO is the impulse exerted on the ball by the wall?
    Q0
    A1 (-18i) N.s
    A2 (+18i) N.S
    A3 (-12j) N.s
    A4 (+12j) N.s
    (+9i) N.s
    Q0
Q13Q0 A particle A of mass M and initial kinetic energy K has an
10 QO elastic head-on collision with a particle B of the same mass
    Q0 M initially at rest. The kinetic energy of the particle A
    QO after collision is:
    Q0
    A1 0
    A2 K/2
    K
    K/SQRT (2)
    K/4
    Q0
Q14Q0 A uniform 50-kg beam is held in a vertical position by a pin at
13 Q0 its lower end and a cable at its upper end. A horizontal force
QO F = 75 N acts as shown in the figure. What is the tension in the
Q0 cable?
Q0
A1 54 N
69 N
47 N
61 N
75 N
Q0
Q15Q0 A horizontal uniform meter stick is supported at the 50-cm mark.
13 Q0 A mass of 0.50 kg is hanging from it at the 20-cm mark and a
Q0 0.30 kg mass is hanging from it at the 60-cm mark (see Fig.7).
QO Determine the position on the meter stick at which one would
QO hang a third mass of 0.60 kg to keep the meter stick balanced.
Q0
A1 70 cm
A2 74 cm
3 65 cm
A4 86 cm
A5 62 cm
Q0
Q16Q0 A 20-m long steel wire (cross-sectional area 1.0 cm**2, Young's
13 Q0 modulus 2.0 x 10**11 N/m), is subjected to a force of 25000 N.
    How much will the wire be stretched?
    Q0
    A1 2.5 cm
    A2 0.25 cm
    A3 12 cm
    A4 25 cm
    A5 1.2 cm
    Q0
Q17Q0 A satellite circles a planet (mass M = 5.0x10**24 kg) every
14 Q0 98 min. What is the radius of the orbit?
Q0
A1 6.6 x 10**6 m
A2 7.8 x 10**6 m
A3 7.4 x 10**6 m
A4 1.3 x 10**7 m
A5 8.1 x 10**6 m
```


Q0

Q1800 Three 5.0 kg masses are located at points in the $x y$ plane as
14 Q0 shown in the Fig.4. What is the magnitude of the resultant force Q0 caused by the other two masses on the mass at the origin?
Q0
A1 2.1x10**(-8) N
A2 2.7×10 ** $(-8) \mathrm{N}$
A3 1.8×10** (-8) N
A4 $2.4 \times 10 * *(-8) \mathrm{N}$
5 2.9×10** (-8) N
Q0
Q19Q0 A rocket is fired vertically from the surface of a planet (mass
14 Q0 = M, radius = R). What is the initial speed of the rocket if
Q0 its maximum height above the surface of the planet is 2 R ?
Q0 (Assume there is no air resistance)
Q0
A1 $\operatorname{SQRT}(4 \mathrm{GM} / 3 \mathrm{R})$
$2 \operatorname{SQRT}(8 G M / 5 R)$
SQRT (3GM/2R)
SQRT (5GM/3R)
SQRT (GM/3R)
Q0
Q20Q0 A spaceship (mass $=m$) orbits a planet (mass $=M$) in a circular
14 Q0 orbit (radius = R). What is the minimum energy required to make
Q0 the spaceship escape the gravitational force of the planet?
Q0
A1 $\mathrm{GmM} /(2 \mathrm{R})$
A2 $\mathrm{GmM} / \mathrm{R}$
A3 $\mathrm{GmM} /(3 R)$
$42 \mathrm{GmM} /(5 \mathrm{R})$
$5 \mathrm{GmM} /(4 \mathrm{R})$
Q0
Q21Q0 A 12-kg crate rests on a horizontal surface and a boy pulls on
6 Q0 it with a force that is 30 deg. above the horizontal. If the
coefficient of static friction is 0.40 , the minimum force he needs to start the crate moving has a magnitude of:
Q0
A1 44 N
247 N
54 N
56 N
71 N
Q0
Q22Q0
15 Q0
The density of water and oil are $1.0 \mathrm{~g} / \mathrm{cm} * * 3$ and $0.80 \mathrm{~g} / \mathrm{cm} * * 3$
20
Q0
A1 10 cm
A2 4.6 cm
A3 8.0 cm
A4 2.0 cm
A5 12 cm
Q0
Q23Q0 An incompressible ideal liquid flows along the pipe as shown in
15 Q0 Fig.6. The ratio of the speeds v2/v1 is:
Q 0
A1 A1/A2
A2 A2/A1
A3 (A1/A2)**2
A4 (A1/A2)**0.5
v1/v2
Q0
Q24Q0 Bernoulli's equation can be derived from the conservation of:
15 Q0
A1 energy
mass
angular momentum
volume
pressure
Q 0
Q25Q0 A liquid of density $791 \mathrm{~kg} / \mathrm{m} * * 3$ flows smoothly through a
15 Q0 horizontal pipe (see Fig. 6). The area A2 equals A1/2. The
pressure difference between the wide and the narrow sections of
the pipe $(\mathrm{P} 1-\mathrm{P} 2)$ is 4120 Pa . What is the speed v1?
Q0
A1 $1.86 \mathrm{~m} / \mathrm{s}$
$22.91 \mathrm{~m} / \mathrm{s}$
A3 $4.50 \mathrm{~m} / \mathrm{s}$
A4 $5.21 \mathrm{~m} / \mathrm{s}$
A5 $0.19 \mathrm{~m} / \mathrm{s}$
Q0
Q2620 A 3-kg block, attached to a spring, executes simple harmonic
16 Q 0 motion according to $x=2 * \cos (50 * t)$ where x is in meters and
Q0 t is in seconds. The spring constant of the spring is:
Q0
A1 $7500 \mathrm{~N} / \mathrm{m}$
A2 $100 \mathrm{~N} / \mathrm{m}$
A3 $150 \mathrm{~N} / \mathrm{m}$
A4 $1.0 \mathrm{~N} / \mathrm{m}$
A5 $2100 \mathrm{~N} / \mathrm{m}$
Q0
Q27Q0 Mass m oscillating on the end of a spring with spring constant
16 Q 0 k has amplitude A. Its maximum speed is:
Q0
A1 $A * \operatorname{SQRT}(k / m)$
A2 $(\mathrm{A} * * 2) * k / m$
A3 $A * \operatorname{SQRT}(\mathrm{~m} / \mathrm{k})$
A4 $A * m / k$
A5 $(\mathrm{A} * * 2) * \mathrm{~m} / \mathrm{k}$
Q0
Q28Q0 A $0.25-\mathrm{kg}$ block oscillates on the end of the spring with a
16 Q 0 spring constant of $200 \mathrm{~N} / \mathrm{m}$. When $t=0$, the position and
$Q 0$ velocity of the block are $x=0.15 \mathrm{~m}$ and $v=3.0 \mathrm{~m} / \mathrm{s}$. What is
Q0 the maximum speed of the block?
Q0
A1 $5.2 \mathrm{~m} / \mathrm{s}$
A2 $0.18 \mathrm{~m} / \mathrm{s}$
A3 $3.7 \mathrm{~m} / \mathrm{s}$
A4 $0.13 \mathrm{~m} / \mathrm{s}$
A5 $13 \mathrm{~m} / \mathrm{s}$
Q0
Q29Q0 An object undergoing simple harmonic motion takes 0.25 s to
16 Q 0 travel from one point of zero velocity to the next such point.
Q0 The distance between those points is 40 cm . The amplitude and
Q0 frequency of the motion are:
Q0
A1 $20 \mathrm{~cm}, 2 \mathrm{~Hz}$
A2 $40 \mathrm{~cm}, 2 \mathrm{~Hz}$
A3 $30 \mathrm{~cm}, 2 \mathrm{~Hz}$
A4 $30 \mathrm{~cm}, 4 \mathrm{~Hz}$

A5 $20 \mathrm{~cm}, 4 \mathrm{~Hz}$
Q0
Q30Q0 A $13-N$ weight and a $12-N$ weight are connected by a massless
5 Q0 string over a massless, frictionless pulley. The $13-\mathrm{N}$ weight
Q0 has a downward acceleration equal to:
Q0
A1 $\mathrm{g} / 25$
A2 $\mathrm{g} / 12$
A3 $\mathrm{g} / 13$
A4 9
A5 (13g/25)

