```
PHYS101=012 final
Q1 Q0 Consider a simple harmonic motion, say as described
ch Q0 by a mass-spring system. The ACCELERATION of the mass
16 Q0 will be maximum when the
***Q0
    A1 displacement of the mass is maximum
    2 velocity of the mass is maximum
    displacement of the mass is minimum
    potential energy is minimum
    kinetic energy is maximum
    Q0
Q2 Q0 What happens to the FREQUENCY if the length of a
ch QO simple pendulum is INCREASED by a factor of FOUR?
16 Q0
***A1 it decreases by a factor of TWO.
    it increases by a factor of TWO.
    it remains constant(i.e. does not change).
    it increases by a factor of FOUR.
    it decreases by a factor of FOUR.
    Q0
Q3 Q0 A particle of mass 0.10 kg is vibrating with simple
ch QO harmonic motion with a period of 0.20 s and a maximum
16 Q0 speed of 10 m/s. Find the maximum DISPLACEMENT of the
***Q0 particle.
    Q0
    A1 0.32 m
    2 0.12 m
    0.53 m
    0.98 m
    0.00 m
    Q0
Q4 Q0 A simple harmonic oscillator is oscillating with an
ch QO amplitude A. For what value of the DISPLACEMENT does
16 Q0 the kinetic energy equal the potential energy?
***Q0
    0.707 * A
    0.500 * A
    1.414 * A
    0.816 * A
    1.633 * A
    Q0
Q5 Q0 A 3-kg block, attached to a spring, executes simple
ch QO harmonic motion on a horizontal frictionless surface
16 Q0 according to }x=2 cos(10 t + 3.14) where x is i
***Q0 meters and t is in seconds. Find the magnitude of the
    maximum ACCELERATION.
    Q0
    A1 200 m/s**2
    A2 }400\textrm{m}/\textrm{s}**
    A3 }20\textrm{m}/\textrm{s}**
    A4 500 m/s**2
    A5 00 m/s**2
    Q0
Q6 Q0 The open vertical tube in FIGURE 1 contains two liquids
ch Q0 of densities Rho1 = 1000 kg/m**3 and Rho2 = 600 kg/m**3,
15 Q0 Which do not mix. Find the PRESSURE (in N/m**2) at the
    bottom of the tube.
***Q0
A1 1.3* 10**5
A2 1.9* 10**4
A3 2.1* 10**4
```

PHYS101 Final Exam Term-012


```
    A4 3.7* 10**5
    A5 0.3* 10**4
    Q0
Q7 Q0 Water (density = 1.0 x 10**3 kg/m**3) flows through a
ch QO horizontal pipe as shown in FIGURE 2. At the wider end
15 QO its speed is 4.0 m/s and at the narrow end its speed
***Q0 is 5.0 m/s. The DIFFERENCE in pressure,P2 - P1, between
    the two ends is:
    +4.5 x 10**3 Pa
    -4.5 x 10**3 Pa
    +7.0 x 10**2 Pa
    -7.0 x 10**2 Pa
    0.0 Pa
    Q0
Q8 Q0 A 3.20-kg block of metal measuring 15 cm X 10 cm X 10 cm
ch QO is suspended from a scale and totally immersed in water
15 Q0 as shown in FIGURE 3. What is the READING of the spring
***Q0 scale (in N)? (density of water = 1.0* 10**3 kg/m**3)
    Q0
    A1 16.7
    A2 10.3
    A3 28.9
    A4 31.4
        14.7
    Q0
Q9 Q0 A block of wood floats in water with two-third of its volume
ch QO submerged. Find the DENSITY of the wood (in kg/m**3).
15 Q0 ( Density of water is 1.0* 10**3 kg/m**3).
***Q0
    A1 667
    A2 1500
    A3 1000
    A4 500
    333
    Q0
Q10Q0 The rate of flow of water through a horizontal pipe
ch QO is 2.0 m**3/minute. Determine the SPEED of flow at
15 Q0 a point where the radius of the pipe is 5.0 cm.
***Q0
    A1 4.2 m/s
    A2 2.0 m/s
    A3 6.0 m/s
    A4 5.3 m/s
    A5 7.2 m/s
    Q0
Q11Q0 Two concentric shells of uniform density having masses
ch Q0 M1 and M2 and Radii R1 =2.0 m, R2 = 4.0 m are situated
14 Q0 as shown in FIGURE 4. Find the gravitational FORCE on
O a particle of mass m placed at point B at a distance of
    0 3.0 m from the center :
***Q0
    (G*M1*m)/9
        G* (M1+M2)*m/9
        G* (M1+M2) *m/3
            (G*M2)*m/16
        G* (M1 +M2) *m/4
    Three particles with equal mass M = 2.0 kg are located
Q at (0,0), (4,0) and (0,3) where the x and y coordinates
1 4 \text { QO are in meters. Find the magnitude of the gravitational}
```

0 FORCE exerted on the particle located at the origin by the other two particles.

```
3.4* 10** (-11) N
4.6* 10** (-11) N
5.2* 10** (-12) N
1.7* 10** (-10) N
2.6* 10** (-11) N
```

Q0
Q13Q0 A moon is moving in a circular orbit around a planet with
ch Q0 a period of $2.75^{*} 10 * * 4 \mathrm{~s}$. Find the MASS of the planet if the
14 Q0 radius of the orbit is $9.4 * 10 * * 6 \mathrm{~m}$.
***Q0
A1 6.5* $10 * * 23 \mathrm{~kg}$
A2 5.9* $10 * * 26 \mathrm{~kg}$
A3 2.3* $10 * * 25 \mathrm{~kg}$
4.2* $10 * * 23 \mathrm{~kg}$
7.6* $10 * * 35 \mathrm{~kg}$
Q14Q0 A 1000-kg rocket is fired vertically from Earth's surface
ch Q0 with zero total mechanical energy. With what KINETIC energy
14 Q0 was it fired?
***Q0 (Mass of Earth $=6.0 * 10 * * 24 \mathrm{~kg}, \operatorname{Re}=6.4 * 10 * * 6 \mathrm{~m}$)
Q0
A1 6.3* 10**10 J
A2 3.1* 10**10 J
A3 5.2* $10 * * 6 \mathrm{~J}$
1.0* $10 * * 9 \mathrm{~J}$
9.8* $10 * * 7 \mathrm{~J}$
Q0
Q15Q0 Calculate the WORK required to move an Earth satellite of
ch $Q 0$ mass m from a circular orbit of radius $3 R e$ to one of radius
14 Q0 4Re. (Re = radius of the the earth, Me $=$ Mass of the Earth and
Q0 G = Gravitational constant)
*** Q 0
A1 ($G * m * M e) / 24 * \operatorname{Re}$
A2 ($\mathrm{G} * \mathrm{~m} * \mathrm{Me}) / 12 * \operatorname{Re}$
A3 ($G * m * M e) / 6 * R e$
$4(G * m * M e) / 8 * \operatorname{Re}$
$(G * m * M e) / 4 * R$
Q 0
Q16Q0 A 5.00-kg ball moving horizontally hits a wall with a
ch $Q 0$ speed of $5.00 \mathrm{~m} / \mathrm{s}$ and rebounds with a speed of $2.00 \mathrm{~m} / \mathrm{s}$.
10 Q0 Find the magnitude of the IMPULSE exerted on the ball
***Q0 by the wall.
Q0
A1 35.0 N.s
A2 $25.0 \mathrm{~N} . \mathrm{s}$
A3 10.0 N.s
A4 15.0 N.s
A5 $40.0 \mathrm{~N} . \mathrm{s}$
Q0
Q17Q0 As shown in FIGURE 5 a disk rotates about a vertical,
ch Q0 frictionless axle with angular velocity 50 rad/s.
12 Q0 A second identical disk, initially NOT rotating, drops
***Q0 onto the first disk and the two disks eventually reach
an angular velocity W. Calculate W (in rad/s).
Q0
A1 25
A2 50
A3 75

A4 35
A5 15
Q0
Q18Q0 The only force acting on a $1.5-\mathrm{kg}$ particle as it moves along
ch $Q 0$ the x-axis varies as shown in FIGURE 6. The particle was at 7 Q0 rest at $x=0$. Find the SPEED of the particle at $x=12 \mathrm{~m}$. ***Q0

A1 $20 \mathrm{~m} / \mathrm{s}$
A2 $30 \mathrm{~m} / \mathrm{s}$
A3 $45 \mathrm{~m} / \mathrm{s}$
A4 $15 \mathrm{~m} / \mathrm{s}$
A5 $0.0 \mathrm{~m} / \mathrm{s}$
Q0
Q19Q0 One end of a 0.80 m string is fixed, the other end
ch Q0 is attached to a $2.00-\mathrm{kg}$ stone. The stone swings in 6 Q0 a vertical circle, passing the bottom point at $10.0 \mathrm{~m} / \mathrm{s}$. ***Q0 The RADIAL acceleration of the stone at the top of the

QO circle is:
Q0
A1 $86 \mathrm{~m} / \mathrm{s} * * 2$
A2 $125 \mathrm{~m} / \mathrm{s} * * 2$
A3 $100 \mathrm{~m} / \mathrm{s} * * 2$
A4 $39 \mathrm{~m} / \mathrm{s} * * 2$
A5 $0 \mathrm{~m} / \mathrm{s} * * 2$
Q0
Q20Q0 As a particle moves along the x-axis it is acted on by
Ch Q0 a conservative force $F(x)$. The potential energy $U(x)$ of 8 Q0 the particle as a function of x is shown in Figure 7. ***Q0 The FORCE $\mathrm{F}(\mathrm{x})$ is:

Q0
A1 +10 N
A2 -10 N
A3 +20 N
A4 -20 N
A5 0.0 N
Q0

ch Q0 r $=(3.5+1.6 \mathrm{t}) \mathrm{i}-2.7 \mathrm{j}+3.0 \mathrm{k}$, with r in meters
$9 Q 0$ and t in seconds. The LINEAR momentum of the object is
Q0 (in kg.m/s):
***Q0
A1 3.2 i
A2 7.0 i
A3 -5.4 i
A4 7.0 i $+3.2 j$
A5 0.0
Q0
Q22Q0 By exerting a horizontal force of 200 N a man pushes a
ch Q0 box of weight 3000 N over a horizontal distance of
7 Q0 5 m along a level road. The woRk done by the man is:
***Q0
A1 1000 J
A2 15000 J
A3 1531 J
A4 8000 J
A5 7500 J
Q0
Q23Q0 A certain wheel has a rotational inertia of $12 \mathrm{kg*m**}$. Under ch QO the application of a certain CONSTANT torque, it turns through 11 QO 5.0 revolutions and its an angular velocity increases from

```
***Q0 5.0 rad/s to 6.0 rad/s. Find the value of the TORQUE.
    Q0
    A1 2.1 N.m
    A2 5.7 N.m
    A3 3.3 N.m
    A4 1.1 N.m
    A5 3.6 N.m
    Q0
Q24Q0 Increasing the angular speed of a rotating body will not
ch QO cause an increase in (Choose the CORRECT answer):
11 Q0
***A1 the moment of inertia
    angular momentum
    linear speed
    rotational kinetic energy
    the frequency
    Q0
Q25Q0 A horizontal uniform beam of weight W = 200 N and length
ch QO L = 6.0 m is supported by a hinge and a cable as shown
13 Q0 in Figure 8. The system is in equilibrium. find the
    QO TENSION in the cable.
***Q0
    200 N
    100 N
    400 N
    500 N
    150 N
    Q0
Q26Q0 For two vectors A = 3i +2j and B = i - 3j,
ch Q0 find (AXB)/(A.B).
3 Q0
***A1 (+ 11/3) k
        (- 11/3) k
        (+ 7/9 ) k
        (- 7/9) k
        (+ 11/9) k
    Q0
Q27Q0 A 27.6-gram gold is in the form of a right circular
ch Q0 cylinder of radius 2.50 micrometer and length L. Find
1 Q0 L ( Take the density of gold to be 19.32 g/cm**3).
***Q0
    A1 7.3* 10**4 m
    A2 7.3* 10**8 m
    3 1.2* 10**3 m
    1.2* 10**5 m
    6.4* 10**7 m
    Q0
Q28Q0 A gunner can hit a target 200 m away if he aims his
ch Q0 gun at 55 degrees above the horizontal. At what OTHER
4 QO ANGLE can he aim his gun and still hit the target?
***Q0
    35 degrees
    15 degrees
    45 degrees
    75 degrees
        6 0 \text { degrees}
    Q0
Q29Q0 Find the COEFFICIENT of kinetic friction for which
ch QO a body of mass m = 2.0 kg will slide down a 10 degree
6 QO inclined plane with constant velocity.
    Q0
```

```
    A1 0.18
    A2 0.32
    A3 0.23
    A4 0.00
    A5 0.50
    Q0
Q30Q0 A stone is thrown vertically upward with a speed of
ch Q0 8.0 m/s. Find its ACCELERATION just before it hits
    2 Q0 the ground.
***Q0
    A1 }9.8\textrm{m}/\textrm{s}**2 (downward
    A2 }9.8\textrm{m}/\textrm{s}**2 (upward
    A3 8.0 m/s**2 (downward)
    A4 8.0 m/s**2 (upward)
    A5 0.0 m/s**2
    Q0
```

